
©

o

<

o(

THE UNIVERSITY OF MICHIGAN

Technical Report 25

CONCOMP

January 1970

A PROGRAMMING SYSTEM
FOR THE SIMULATION OF CELLULAR SPACES

Ronald F. Brenctar

Reproduced by the
CLEARINGHOUSE

for Federal Scientific & Technical
Information Springfield Va. 22151

This document has been appcaw
far public release and wtäm Bi
disMbutioa {■ wliaitad

111 \SZm m m % m
D

,11

—— . .,:,..:-..- ■- . v"v-.

i

THE UNIVERSITY OF MICHIGAN

Technical Report 25

A PROGRAMMING SYSTEM
FOR THE SIMULATION OF CELLULAR SPACES

Ronald F. Brender

CONCOMP: Research in Conversational Use of Computers
F.H. Westervelt, Project Director

ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

January 1970

ACKNOWLEDGEMENTS

The generosity and support of many individuals and institutions have

given me substantial assistance during the course of this work. I extend

my appreciation of Professor John Holland, whom I value as a close friend,

for serving so loyally as my Chairman; to Professor Arthur Burks for sup-

porting this work both as a member of my committee and as Director of the

Logic of Computers Group; to Professors Bernard Caller and Larry Flanigan

for their interest and careful attention to so many details of the work;

to the University of Michigan, the National Institutes of Health, and the

Advanced Research Projects Agency for direct and indirect support in many

ways; to Daniel Frantz and John Foy, long-time friends and talented system

programmers, for creating much of the software foundation on which my

implementation depends; to Thomas Schunior for his constant flow of ideas

and techniques; to James Mortimer for his interest and courage in devel-

oping his application of the system at a time when it was still in a state

of considerable flux; to Jean Slater, Bonnie Dailey, and Jan McDougall

for patiently typing the many drafts; to (Mrs.) Jinx Dawson for drawing

many of the figures; to Richard Laing and Thomas Dawson, capable admini-

strative assistants, for considerable help in coping with the Establishment;

and to my wife, Maurita, for her devoted support of my efforts, for her

tolerance when my studies occupied my time and attention, and for her

valiant struggle with my manuscript to make it stylistically acceptable.

To each goes my heart felt thanks.

11

I

TABLE OF CONTENTS

im
1. INTRODUCTION 1

1.1 On Simulation 5
1.2 Informal Definition of Cellular Spaces 6
1.3 Concepts of Embedding § Interpretation 11
1.4 Review of Several Cellular Models 13

1.4.1 John Von Neumann 13
1.4.2 Edgar F. Codd 15
1.4.3 Larry K. Flanigan 17
1.4.4 Marion Finley, Jr. 17
1.4.5 John H. Holland 18

2. ANALYSIS AND FORMULATION OF SYSTEM REQUIREMENTS 24

2.1 Discreteness 24
2.2 Cell Space Geometry 24
2.3 Size of Simulation and Concept of Quiescence 27
2.4 Neighborhoods 29
2.5 Transition Functions 30

2.5.1 Data Structure 31
2.5.2 Parameters Called by Value 31
2.5.3 Input-Output 33

2.6 Input to Cell Space 33
2.7 Output and Monitoring of Cell Space 34
2.8 Interactive Requirements 35
2.9 New Language or Old? 36
2.10 Formalization 37

3. A LANGUAGE FOR CELL SPACE SIMULATION 40

3.1 Procedural Aspects 42
3.1.1 Lexical Format 42
3.1.2 Primitive Data Types 44
3.1.3 Declarations 45
3.1.4 Executable Statements 50

3.1.4.1 Assignment SO
3.1.4.2 Unconditional Branch 54
3.1.4.3 Conditional Branch 54
3.1.4.4 Loop Statement 55

iii

• M

l*SSL
3.1.4.S Miscellaneous Executable Statements 56

3.1.5 Literal Structured Variables 57
3.2 Simulation Oriented Aspects 59

3.2.1 Data Structures 59
3.2.1.1 CELL Data Structure 59
3.2.1.2 External and Initial Cell States 61
3.2.1.3 Neighborhood, Size of Space and

Edge Declarations 61
3.2.2 Entry Points 63
3.2.3 Operators 66
3.2.4 Default Specifications ~ 66

3.3 An Example: MODS 67

4. THE RUN-TIME ENVIRONMENT 70

4.1 Keyboard Command Language 74
4.1.1 Immediate Execution 74
4.1.2 Deferred Execution via Micro-Program 79
4.1.3 Commands for "undefined" Transitions 81

4.2 The Display Facilities 82
4.2.1 DISPLAY CELLS 85
4.2.2 MULTI DEFINE 87
4.2.3 DISPLAY PARAMETERS 90

5. APPLICATIONS, EVALUATION S SUMMARY 93

93
93

100
101
104
105
109

111

113

5.1 Applications
5.1.1 An Example From the Literature
5.1.2 Current Work
5.1.3 Related Problem Areas

5.2 Evaluation
5.3 Extensions
5.4 Summary

REFERENCES

APPENDICES

iv

v

I

LIST OF FIGURES

,Fig.ure Page

a

1.1 Exanple Space and Neighborhood Templates ' 8

1.2 Example Transition Function 10

2.1 Embedding of Hexagonal Cell Space 26

3.1 Example Data Structure Definition and Related Notation 47

3.2 Syntax of Assignment Statement 51

3.3 MODS Cell Space 68

4.1 Conventional Computer Configuration 71

4.2 Commands Without Parameters 75

4.3 Commands With Parameters 76

4.4 Commands for Deferred Execution 80

4.5 State Transition Diagram for Display Images 83

4.6 Command Menu 84

4.7 Example Cell Space State Display 86

4.8 Data Entry Menus 88

4.9 Parameters Menu 91

5.1 FM Cell Space 94

"

COMMENTARY

ON A

CONCEPT OF PLATO

In performing a computation we do not handle objects of the real

world, but merely representations of objects. We are like people who

live in a cave and perceive objects only by the shadows which they cast

upon the walls of the cave. We use the information obtained from study-

ing the form of these shadows to make inferences about the real world.

However, we are not merely passive observers of shadows cast by real

objects. We modify reality and observe the new patterns of shadows

cast by the nev configuration of objects. We go even further, forgetting

altogether about the real objects that cast the shadows, treating the pat-

terns of shadows as physical objects, and studying how patterns of shad-

ows can be transformed and manipulated.

Information structures are representations of real objects just like

shadows on the walls of a cave. The programmer studies how information

structures can be transformed and manipulated and in doing so learns

something about objects represented by the information structures.

However, the real computer scientist falls in love with information

structures and studies their properties not only for what they tell

him about the real world but because he finds them beautiful.

Peter Wegner
Programming Languages,
Information Structures, and
Machine Organization (1968)

VI

. a .

•x-

■

Dedicated to my grandfather

Peter E. Brender
Civil Engineer and City Planner

who first introduced me to the
world of computers in 1958 when

he purchased an LGP-30 for his firm.

Vll

«*■'«

L

iv -.

■

I ',

BLANK PAGE

■%i

2^

N*

ABSTRACT

A PROGRAMMING SYSTEM FOR THE

SIMULATION OF CELLULAR SPACES

by

Ronald Franklin Brender

Chairman: John H. Holland

Regular networks of similar interacting components constitute an

important class of models in man/ disciplines, from automata theory to

parallel computer systems to biological systems. Yet, no simulation

system provides comprehensive facilities for studying such models con-

veniently by computer. Such a system is proposed and an implementation

exhibited. Careful attention is given to setting forth the guiding

considerations in developing the final form of the system. Primary among

these is maximizing the usefulness of the system for supporting heuristic

and interactive exploration of model behavior.

Chapter 1 develops the notions of cellular spaces (regular geometry,

neighborhood template, transition function) and reviews models used by

Von Neumann, Codd, Flanigan, Finley and Holland. Chapter 2 analyses

these models and formulates the requirements for building a simulation

system suitable for a wide range of cellular models. Chapters 3 and 4

describe a total programming system for simulation. A language is

designed that provides novel constructs useful for cellular models. A

simulation support system provides on-line monitoring of model behavior

on a graphic CRT and experimenter interaction with the system via keyboard

and lightpen. Chapter 5 discusses several applications developed on the

system, and evaluates and summarizes the work. Several appendices detail

the implementation.

■

,

■

I

1. INTRODUCTION

John von Neumann made many contributions to the computing sciences in

such diverse areas as electronic technology, computer organization, pro-

gramming theory, and mathematical foundations. Two contributions, in

particular, have had an enduring impact and are closely allied to efforts

reported here.

Von Neumann's logical, universal space was defined to prove, for the

first time, the logical possibility of a self-reproducing machine. Since

that time the formalism he originated has been elaborated and extended into

many application areas and taken on many guises. These include the formal

models of Myhill, Yamada and Amoroso, Codd, Holland, and many others. In

addition many investigations of physical phenomena, such as vibrating

membranes and weather systems, and of biological systems, such as neuro-

logical networks and biological cell populations, have drawn heavily on

that foundation. Formal models in these areas have been variously called

cellular structures (Burks), iterative arrays (Holland, Hennie), tessella-

tion structures (Myhill), tessellation automata (Yamada and Amoroso) and

cellular spaces (Codd). We shall use exclusively the term "cellular space"

as both a general name for all related concepts and for the particular

models developed here.

Von Neumann's second contribution concerns the manner in which com-

puters are used in these investigations. In surveying von Neumann's con-

tributions, Burks [IS] writes in this respect:

The procedure which he [von Neumann] pioneered and promoted

is to employ computers to solve crucial cases numerically and to

use the results as a heuristic guide to theorizing. Von Neumann

believed experimentation and computing to have shown that there

are physical and mathematical regularities in the phenomena of

fluid dynamics and important statistical properties of families

of solutions of the non-linear partial differential equations in-

volved. .. .Von Neumann believed that one could discover these

regularities and general properties by solving many specific

equations and generalizing the results. From the special cases

one would gain a feeling for such phenomena as turbulence and

shock waves, and with this qualitative orientation could pick

out further critical cases to solve numerically, eventually de-

veloping a satisfactory theory.

This particular method of using computers is so important

and has so much in connon with other, seemingly quite different,

uses of computers that it deserves extended discussion. It is

of the essence of this procedure that computer solutions are not

sought for their own sake, but as an aid to discovering useful

concepts, broad principles, and general theories. It is thus

appropriate to refer to this as the heuriacia uae of computers....

[When the computations are compared with experimental data] the

heuristic use of computers becomes simulation.

Many investigations of these systems cannot be carried out without

conputer assistance because:

1) the behavior of these systems cannot be expressed in closed

analytic form. The only way to determine the state of a system at a time

t* given its state at t is to calculate the successive states at t, t+1,

t*2,..., t'-l, t».

2) The systems to be simulated must consist of at least several hun-

dred entities to provide sufficient structure to be interpretable as rep-

resenting interesting behavior.

---——-

3) The kind of behavior of interest in such systems involves time

scales several orders of magnitude larger than the time scale on which the

system must be simulated.

4) Exactly what constitutes interesting behavior is itself not rig-

orously definable. Either considerable computational power must be devoted

to the task of recognizing interesting behavior as well as generating it,

or on-line monitoring and interaction is a necessity to permit an experi-

menter to use his insight to recognize the desired behavior.

In spite of the important role that cellular models have played in

much research, there are no computer languages available that have the right

characteristics for generating and using simulations of cellular models.

We are concerned here with filling that lack by designing and implementing

a simulation language and system specifically oriented toward cellular

models. Equally important, we seek to create a tool that will permit a

computer to be used conveniently and heuristically.

We have fulfilled our goals by 1} developing a run-time environment

(or subsystem) for use in conducting cellular simulations, 2) designing

a language suited to specifying the characteristics of cellular systems, and

3) implementing a compiler for that language. This work has been conducted

on the computer facilities of the Logic of Computers Group«

The heuristic utility of the system is accomplished in part by exploit-

ing the high data rate and flexible graphic capabilities of the CRT display

The Logic of Computers Group is a research unit within the Department of
Computer and Communication Sciences of the University of Michigan. Its
computer facilities include an IBM 1800 with disk bulk storage interfaced
to a DEC PDP7 with graphic CRT display.

4

that we have available. The system is also quite flexible and modular,

offering the experimenter a range of capabilities and the opportunity even to

handle specific tasks in a non-standard fashion if desired. The system

will, for example, allow the user to selectively monitor various charac-

teristics of the simulated system, to halt, to save conditions, to modify

the characteristics of the system, and to resume the simulation. The

language provides to the user a natural and efficient manner in which to

generate a simulation. Its notation resembles as much as possible the

mathematical notation frequently used in describing such systems.

We emphasize that the purpose of this investigation is the design of

an implementable system which others will find has utility in conducting

investigations in which cellular models are a method and not an end in

themselves. Just what this author means by an implementable system is

undoubtedly influenced by his own experience at doing an implementation

in a particular operating environment and his personal prejudices about

what is important and, hence, must be implementable and what can be rea-

sonably compromised in the interest of limiting the effort required to an

acceptable amount. Every effort will be made to make these biases explicit

where they are recognized.

The language of our system has aspects of two distinct types. The

first of these is a programming language in which to express the significant

computational aspects of cell state transitions. The second of these is
-

a command language which is employed during the course of a simulation to

direct the global characteristics of the simulation system. In today's

large scale, sophisticated computer systems the distinction between these

aspects can be made arbitrarily small through the agency of incremental

compilers, interpreted code, and dynamic loading (and unloading) of exe-

cution modules. However, since one important characteristic of any simu-

lation system is a fast execution rate, this author feels the above dis-

tinction will remain useful for some time.

This chapter develops the notions of cellular space and related con-

cepts and concludes with a brief review of several models, some actually

implemented and some not, that have influenced this investigation. Chapter

TVo presents an analysis of the requirements for simulating cellular models

and suggests a particular structure for a simulation system. Chapters

Three and Four set forth a particular language and system specification de-

signed to meet the requirements developed in Chapter TVro. This exposition

is purposefully kept as independent of the pecular hardware and system

constraints under which the author implemented the described system as is

practical. Chapter Five reviews the application of this language to past

and current work, suggests extensions and generally evaluates the utility

of the model. Several appendices detail the actual implementation ac-

complished by the author in the course of this research.

1.1 On Simulation

A system may broadly be any collection of components or elements each

of which is characterized by giving its state at a given point in time.

Moreover, a component may itself be a system, and hence a subsystem of the

containing system. The state of a system as a whole is known if the state

of each of its components is known. The state of the system as a whole is

characterized by the states of its components. A succession of system

states at particular chronological instants of time constitutes a state

history, which we will also call a record of the behavior of the system.

A model of a system A is a system 6 that purports to represent the

(relevant) properties of system A. Simulation is the use of a model to

produce (compute) chronologically a state history of that model, which is

regarded as representing a state history of the modeled system.

There are two basic strategies for doing simulation: the fixed

time-step method and the next-event method. In the fixed time-step method,

changes in system state (events) are assumed to occur only at times which

are an integer multiple of a fixed unit of time called the time-step size.

At each time-step each of the elements of the simulated system are examined

to determine the new state to be used as its state for the succeeding time

step. In the next-event method, changes of state may occur at arbiträr'

points in time. At any given time, events may be "scheduled" to occur at

some later point of time. The set of scheduled events is kept in a queue

in chronological order. The simulation proceeds by selecting the event

that is next in the queue and computing the effects of that event. (This

may or may not involve scheduling further events. If the queue ever becomes

empty, the system has reached a "steady state" and the simulation terminates.)

The usual practice in both methods is to assume that, when multiple events

occur at the same point in time, it will make no difference (for the pur-

poses of the simulation) in what order they are actually performed by the

simulator.

1.2 Informal Discussion of Cellular Spaces

A cellular space is a collection of functionally similar cells (or

modules or units) which are connected to each other in a regular manner.

1
For our purposes, models are usually abstractly defined systems.

Let us take for illustration a two-dimensional plane marked into squares

of unit area. Let the center of some arbitrary square be called the origin

and an obvious coordinate system be imagined for identifying a particular

square relative to the origin. Such a system is regular in the sense that

no matter where the origin is chosen, the space "looks" the same.

Each cell has associated with it a set of cells called its neighbor-

hood, whose states may take part in determining the behavior of the central

cell. Typically, the set of neighbors of a cell is determined in the same

manner for every cell, and this determination is often closely related to

the regular manner of interconnection or topology of the space. In our

example one could choose the four cells which have a connon edge with the

central cell as its neighbors. (See cells A and B of Figure 1.1) Another

simple neighborhood is the set of eight cells whose centers are less than

2 units distance from the central cell. (See cell C in the Figure). Note

that it will often be useful to consider the central cell to be in its

own neighborhood.

Each cell may be characterized by giving its state. Each cell in the

2
cell space has its state drawn from the seme state space .

The behavior of each cell is specified as a function F: S -»■ S

Throughout this investigation, when speaking of a cell x and its neigh-
borhood set of cells N(x), cell x will frequently be called the central cell
of the neighborhood. While the word "central" is often intuitively inter-
pretable in its common sense, it is introduced more importantly to avoid
an awkward naming problem.

2
A state space is the set of possible states. Do not confuse this with

space state, which is a particular state characterizing a cell space. Note
that a state space need not be finite or even discrete.

• M

1 c c c

c
C

c
c

a c
b

c c

a A
b

a
B b

a b

0

o is the origin cell

Cell A has neighbors labelled "a"

Cell B has neighbors labelled "b"

Cell C has neighbors labelled "c"

Example Space and Neighborhood Templates

Figure 1.1

T"

where S is the state space, and
N is the cardinality of the neighborhood set.

The arguments of F are the states of the cells in the neighborhood of the

central cell at time t and the value of the function becomes the state of

the central cell for the next time step, t+1. The sequence of cell states

of a given cell will be called the behavior of the cell.

By calculating the function for every cell of the space, a new state

assignment for the entire space is determined. The sequence of state as-

signments for the entire space is called the behavior of the cell epaoe.

To illustrate how "complex" behavior may be modeled in a "simple"

space, consider Figure 1.2. The space is again the two-dimensional

Cartesian system and we will use as neighbors for a cell, the four cells

with boundaries common to the central cell. Let each cell be in one of

four possible states designated by the numerals 0, 1, 2, 3. Figure 1.2

shows a possible state assignment for a portion of the space. Also shown

in Figure 1.2 is a natural language statement of a transition function.

If the given transition function is applied to this space, it is easy to

see that the 1 to the right of the 2 in the figure will change to a 2, the

2 to a 3, the 3 to a 1, and the rest of the space will remain unchanged.

It is as though the pattern "3 2" were propagating along the path of I's.

Indeed a little reflection will satisfy one that the given transition func-

tion will allow the pattern to turn comers and to split at a junction of

two paths and travel down both branches.

Note that in such a simple cell space directionality of the "signal"

has been obtained by representing it with two adjacent cells. As an al-

ternative, a more complicated cell could be specified in which direction

10

0 0 0 0 0 0

1 3 2 1 1 0

0 0 0 0 1 0

0 0 0 0 1 0 0

1 1 1 1 1 1

0 0 0 0 0 0

Transition Function:

If current
state is— And—

Then next
state is--

Any neighbor
in state 2

Otherwise No change

Example Transition Function

Figure 1.2

I J

11

of propagation was coded in the state of a.cell. Then a signal could be

represented as a single cell on a path rather than as two cells.

In cellular simulations there is a great deal of latitude in choosing

between the complexity of a cell and complexity of interactions between

cells. A given kind of behavior can potentially be modeled in many ways.

This freedom of choice is analogous to working with thermodynamic systems;

the art of the science of thermodynamics lies in deciding where to draw

the boundary between system and environment in order to be able to get the

information needed. Similarly, in working with cellular models there often

is an art in deciding what behavior should be built into the cell state

transition function and what part synthesized from groups of cells. There

are many parameters to explore: the topological space itself, the neigh-

borhood specification, the initial state assignment, the transition function.

It is not at all obvious from examination of a transition function

in some cell space what range of behaviors it can be used to model. Clearly

the initial state assigned to a space is crucial to the resulting behavior.

Conversely, given some system that one wants to simulate with a cellular

space, there is no formal approach to finding such a space. One might

consider these the "proto-typical" problem statements in working with cellular

systems.

1.3 Embedding and Interpreting

The concept of embedding one model in another plays an important con-

ceptual role in the applications of cellular model simulations. Informally

a model A may be said to be embedded in a model B if there exists a map

■-"■ ■— —

12

n
e: A » 2 from components and their states in A to sets of components and

their composite states in B which preserves the structural and behavioral

properties of A in the image model B. The inverse of an embedding e: A-^2

is an interpretation of B in terms of A.

Suppose M. and M- are two models. Then an embedding e of M. into

M2 must satisfy the following:

1) Distinct elements of M. map into distinct sets of elements of M-.

2) Each (input, output) of an element of M. maps into an (input,

output) of the image element(s) in NL.

3) If input 1 of element a is connected to output o of element B,

then in the image e(i) is connected to e(o).

4) When a state of M. is the image of a state of NL, then the be-

havior of M- does not depend on any inputs that are not in the image of the

inputs of M..

5) The successor state(s) in M_ of the element image must be the image

of the successor state in M,.

There are several properties of embeddings that should be noted. First,

a single element in the domain model M. can be mapped into a set of elements

of the target model M.. This means that elements of the model M. may be

"simpler" than elements of M., but by combining several elements the state

space and behavior can still be represented.

Second, the image model may have "extra" elements not used in the em-

bedding. These are no problem so long as the behavior of the elements of

the image of M. do not depend on the behavior of elements not in the image.

Third, the regular spacial organization of cellular models permits move-

ment to be modeled in a qualitatively unique manner. In the example of a

Holland [11] gives a more rigorous definition of embedding in terms of com-
positions.

13

signal on a path just cited, the signal is said to move. But no thin^

moves, merely a pattern of states moves in a regular way. The uniformity

of cellular mcdels makes this concept of a moving pattern possible. By

extending the embedding function defined earlier to H a function of time,

(but still satisfying all the given constraints at any particular time),

the notion of motion within a cell space is readily subsumed within the

notion of embedding.

1.4 Review of Several Cellular Models

The remainder of this section will briefly review several cellular

models and their applications that have had a significant impact on our work.

1.4.1 John von Neumann

John von Neumann's establishment of the concept of cellular spaces is

no less important than his many other contributions to the computing sciences.

He set forth a system in which behavior readily interpretable as self-re-

production could be modeled.

Von Neumann's cellular space [1, IS] consisted of an infinite two di-

mensional array of identical finite automata each of which may be thought of

as a unit square with the aggregate covering the plane. The transition

function for each cell depended on the state of the cell itself and on the

state of the four "neighbor" cells which shared a common boundary with the

center cell. All cells represented the same 29-state finite automata. A

particular state is designated as the quiescent state and the transition

function provides that if all five arguments are quiescent then the value of

the function is the quiescent state. Von Neumann further required that the

infinite array have only a finite number of non-quiescent cells at the initial

time t = 0.

14

Briefly, certain states represented transmission states which could

be combined with other such states to provide passing of an activation sub-

state fro» cell to cell analogous to conduction of a signal down a wire.

Certain states enable logical functions such as AND and OR to be performed

on such signals. The NOT logical function was not provided for reasons

connected with representing construction in the system, and hence, the

logical capabilities were not functionally complete. Von Neumann synthe-

sized the NOT function from operations concerned with returning a cell to

the quiescent state; thus a signal moving 'own a path could be stopped

(negated) by opening the path ahead of it. Certain states were associated

with changing the quiescent state of neighbor cells to any of the (non-

active) non-quiescent states.

Von Neumann showed how certain fundamental functional units, such as

pulse encoders and decoders, could be formed by appropriate assignment of

states to a contiguous group of cells. Increasingly higher level units

were synthesized from these units. Finally he demonstrated how to build

a tape controller and a universal constructor. This constructor is capable

of reading a coded description of a cell configuration from a linear

array of cells interpreted as a tape and constructing a device from the des-

cription in a nearby quiescent region of the cell space. Putting a descrip-

tion of the constructor itself on the tape and taking care for a few non-

trivial details (e.g., a way to copy the original tape onto the newly

constructed device and a way to provide the initial activation) he demon-

strated a method for achieving the desired property of self-reproduction.

_

t

15

1.4.2 Edgar F. Codd

The von Neumann system served as a direct inspiration for Codd's dis-

sertation [2]. Codd investigated whether the mathematical properties of

universal computation and reproduction could be achieved in a cellular space

simpler than that used by von Neumann.

Codd exhibited an 8-state, 5-neighbor (same neighborhood as von

Neumann) space in which could be embedded a universal Turing Machine and

a universal constructor interconnected to give a self-reproducing machine.

The eight states are used roughly as follows:

Zero represents the quiescent state. As with von Neumann, a finite

number of cells may be non-quiescent in the initial configuration, and if

all neighbors of a quiescent cell are quiescent then the cell remains

quiescent for the next time step. State one represents a signal path. State

two represents a sheathing or insulating state that surrounds a signal path.

(The concept is analogous to that of a myelin sheath in neural systems.)

Codd demonstrates that any desired machine can be "built" by changing ap-

propriate zero states to one states and then later initializing the device

by propagating a special sheathing signal along the path. This signal sur-

rounds the path by two states as it propagates. State three is used to form

uni-directional paths. States zero through three are further classed as

inactive states.

States four through 7 are termed active states and are used for signal

states. The transition provides for conversion of one signal state into

another so appropriate signals can be generated as needed.

Through heirarchical constructions working from simple gates and

directional paths to a tape unit and universal constructor, Codd's develop-
•

16

ment closely mirrors von Neumann's (in spirit if not in detail) in demon-

strating that his cell system has the desired properties. Codd further

shows how any eight state-five neighbor cell space can be simulated by a

two state-85 neighbor space. Hence, all of his results immediately

generalize to such a two state cell space.

Of further significance here is the methodology used to find an ap-

propriate eight state-five neighbor transition function. While von

Neumann's approach was completely analytical, Codd's was largely empirical.

Using a D.E.C. PDP-1 computer, he programmed a simple simulator to enable

him to monitor the behavior of (a portion of) his state space. Successive

state arrays were typed out on a typewriter. The transition function was

table driven and where a previously unencountered combination occurred,

the neighborhood and current state were typed out and Codd given the oppor-

tunity to define the new state to be used. By incrementally defining the

transition function and then observing the behavior provided, back-tracking

as necessary, Codd gradually built up a transition function which exhibited

the needed behavior. Several different neighborhood configurations were

tried and abandoned during this exploration.

It is important to note the heuristic and exploratory nature of this

investigation. The visual pattern recognition and insight of the investi-

gator play an important role in determining the course of the investiga-

85
tion. Since the number of transition functions possible is 8 (actually

fewer after considering the symmetries Codd imposed) it is clear that ex-

haustive search methods could not possibly be a practical approach to the

problem.

17

1.4.3 Larry K. Flanigan

Flanigan [6] investigated the electrophysiological properties of the

A-V node (atrioventricular node) of mammalian hearts, both in the laboratory

and via computer simulations. He developed a cellular model of the node

based on anatomical and electrophysiological data and on earlier cardiac cell

models. The model was concerned with the propagation of "excitation" from

the atrial edge to the ventricular edge of the node and the role this ex-

citation plays in coordinating contractions of the heart. His simulations

enable him to suggest possible mechanisms for several important classes of

node behavior, both normal and pathological. And quite importantly his

model supporcs the contention that cardiac behavior is explainable on the

basis of a cellular system rather than a syncytium, i.e., as the result of

the effects of local autonomous units rather than a single functional

entity.

Each cell of the model is described by a single transition function

determining its behavior from its own state and that of (up to) six neigh-

bors. Cell state is described by typically S or 6 parameters. A two

dimension, six neighbor, hexagonal geometry was used. Networks of from

approximately 40 to 300 cells were simulated with configurations having

either an approximately rectangular shape or a "funnel" shape. Cells along

the input edge were identical with the rest of the array except that they

had "neighbors" lying outside the array. The state of these external "input

cells" was explicitly controlled to provide the effects of external activity.

1.4.4 Marion Finley, Jr.

Finley is one of the most recent in a line of investigators beginning

with D. 0. Hebb[8] and including Rochester [14], Holland [4, 14] and

18

Crichton [4]. These researchers have worked with various and increasingly

sophisticated models of neural systems in an attempt to demonstrate the

validity of the cell assembly concept postulated by D. 0. Hebb. Basically,

a cell assembly is a collection of neurons that comes to operate as a

functional unit as a result of its stimulus history. Finley claims that he

was very close to this demonstration when the desire to graduate and lack

of computer funds curtailed his investigation.

His simulations typically involved 400 neurons in a two-dimensional

rectangular array. The number of inputs received by each neuron (i.e.

its neighborhood) ranged from 10 to 60 in various experiments. The pattern

of interconnection, randomly generated at the beginning, was fixed during

a single experiment. Thus each cell had an explicitly designated neighbor-

hood. In later experiments the distribution of these interconnections was

biased by the distance between two cells. Each interconnection was char-

acterized by a "synaptic value" which determined the extent of influence of

each of a cell's inputs. The behavior of these synaptic values as well as

the statistical behavior of the network as a whole was studied in detail.

1.4.5 John H. Holland

Inspired in part by von Neumann's cellular space and seeking a more

general formal basis for his study of parallel systems and adaptation,

Holland [10] defined a class of iterative circuit computers. Iterative

circuit computers are composed of a large number of identical modules

operating in parallel in a synchronous fashion. Because of its compactness

and strong relationship to the simulation model of this thesis, the

following characterization is quoted from Holland:

19

The olasa of iterative circuit computers is the set of all

devices (automata) specified by the admissible substitution in-

stances of the quintuple (A, A0, X, f, P). Each particular quin-

tuple designates a distinct interative circuit computer organiza-

tion. Intuitively the five parts of the quintuple determine the

following features of the organization:

1. Selection of A determines the underlying geometry of

the array, particularly the dimension--thus, among other

things A determines whether the array is to be planar,

3-dimensional or higher dimensional;

2. Selection of A0 determines the standard neighborhood or

connection scheme of modules in the array—thus A9 de-

termines the number and arrangement of modules directly

connected to a given module;

3. Selection of X determines the storage register capacity of

the module;

4. Selection of / determines the instruction set and related

operational characteristics of the module;

5. Selection of P determines the path-building (addressing]

capabilities of the modules.

More formally, the admissible substitution instances of each of

the five quantities are:

U A must be some finitely generated abelian group having a

designated set of generators, say an, g\, ..,, g , with the

restriction that no constraining relations involve g^.

That is, the group is free on g^. The positions of modules

in the array are indexed by elements of the subgroup yl*

generated by £;, ..., g . The time-step is given by the

exponent of gQ. Thus a = ^g g^ •.. g ^n, an element of

A, specifies time-step t at the module having coordinates

Cjl» •••» iL)- By choosing the subgroup A' appropriately the

modules can be arranged in a plane, or a torus, or an n-

dimensional array, etc. For example, HA' is free on two

generators g\, gi, an infinite planar array is specified.

k

20

If the constraining relations
100

100
*71100 - •

g2— ' e

where e is the group identity, are added, a 2-dimensional
torus 100 modules in each diameter (10,000 modules total)

is specified.

2. A must be a finite set of elements, {a\, ... (Xj), belong-
ing to the subgroup A1 of A. For a module at arbitrary
location, 4° specifies the arrangement of directly connected

modules. Thus the modules directly connected to the module

indexed by a = ^o* S'l'7 ••• dn* wil1 be the modules at
t jl * k. in * k. . fe., k

a-f " ^0 ^1 ii ... g£ in, where afgx ^ "- 9n in.

For example, if there is a module at Ui$Ö2) relative to
generators git g2, and directly connected modules are to be

at coordinates Ui * 1. Jz), (J1.J2 + 1). Ui - 1» J2). and

Ui, Jl - 1)» then A" should be the set {g\,gz,g\x,g'2l\ where
0'1 is the group inverse of g.

3. X can be an arbitrary finite set. The set of internal states

of the module is the set S * X x Y where Y is the cartesian
It k

product n. y., 7. = n. , {a. U 4»} and a. E 4°. That is, r j»i 1' 1 j=l j T j
y is the set of k x k matrices with entry Y.. being a. or $.
The set X corresponds roughly to the possible states of the
module's storage register; the set Y consists of the possible
gate configurations for the paths—see the transition equa-

tions below.

4. / can be an arbitrary finite function of the form

f : {S [j *)k ■*■ S

f determines the instruction set, that is, the permissible
transitions of the storage register states—see the transition

equations.

5. P can be an arbitrary finite function of the form

P : 5 -•■ y

P determines changes in path gating--see transition equa-

tions.

21

Having chosen (A, A0, X, f, P), the behavior of the corresponding
iterative circuit computer is completely determined by the following

state transition schema:

[5(a) will designate the element of 5 associated with a under

the mapping defined recursively by the transition schema. Under

interpretation 5(a) designates the internal state of the module

with space-time coordinates (t, j., ...,j) corresponding to

a s g gv'"g ^n- fhi* convention will also be used for the
components of 5 and, in particular, y..(a) will designate the

value of element Y.. in the matrix y associated with a. Note
T*1 71 in also, that g^a. - g0 gf .. .g ^ designates the module at the

same space coordinates as given by a« but at time £+ 1 rather

than t.\
Hie transition schema for Yig^a) determines the path-gating at

time t + 1 in the corresponding module in terms of the internal state

of the module at time t, 5(a). Under interpretation, if y..(a) -
a. the gate is open so that information can be passed without a time-
v
step delay from the module at a.a through the module at a to the

-1 3
module at a. a', if y. .(a) ■ * the gate is closed. In other words

y(a) tells how information is to be channeled through the module

to its immediate neighbors; the matrices for these neighbors tell how

the information is to be sent on from there, etc. (Details of the

information transfer are given by the transition equations for Sig^a)).

ZjAdQ*) ' hjb) if 0. .(a) * 0 and P. .(a) « a.
»J TrJ TtJ IJ J

* P- .(a) otherwise
where P..(a) is the matrix element (t,j) of P(5(a))

and Q._.{a) = faiq^iaj*)

yhM s0i£WB) '* andp^(8) 'ah
- 1 if P.Ä(6) " *

■ ^h^hi (%*) otherwise
if

where A,., , q. is the conjunction of the a. 0.

22

Under interpretation P..(a) specifies a proposed gate-setting for

time t + 1 at the given module. Q-.(.a) prohibits any change in the
gate-setting, if there are any changes elsewhere in the path leading
through that particular gate. This prohibition prevents the follow-

ing unstable situations:
1. A cycle of connections without delay (operation of modules

belonging to such a cycle would in general be indeterminate).

2. An indefinitely long chain of connections without delay

(otherwise a possibility in certain interesting infinite

arrays).

The transition equations for Xig^a) are given in terms of a function
I: B -*■ S, defined for a subset fl of ^4. Under interpretation I repre-

sents input to the computer:

Ugo«) =/.pCS'Caia. 1),.... ^'(a^./c))

where f is the projection of f on X

and 5'(ß,i) = 5(0) ifiy^oa) » «., «t»)

and I(ß) is not defined

■ I(ß) if y.(0oß) " (♦.••»» *) and -W e s

' fis'a^W'B, i),..., 5'(yik(e)-e,fe))
otherwise

where $& - $ and S'(<t».j) = $

Holland [9], Comfort [3] and others have discussed possible particular

iterative circuit computers, including their set up, programming, etc.

Holland [11] also shows that his ICC's contain a subset of composition-uni-

versal compositions. Basically this means there exist ICC's in which any

machine for computing a computable function may be embedded, anywhere in the

ICC.

Using Holland's formalism, we may define von Neumann's cellular space

as follows:

■ —n-i ■■—— ■'-"

-

23

1) A B the free group over two generators a., a,.

2) A0 ■ {1, a., a2, a' , al }. Note that the group identity must be

included in A0 in order that the domain of the transition function

include the module itself.

3) X = {1, 2, 3, 29}

Y s Ye where Yo is a 5 by S matrix with all zero elements, i.e.,

no information "passes through" any cell to others.

4) Vs e S, P(s)/y = Y0

(weaker conditions would suffice but this is convenient.)

5) F: S -»• X and, further, condition 4 implies that F is completely

determined by F restricted to X .

The enumeration of F is not relevant here except to recall that von Neumann

designated a quiescent state q E X and required that

1) F(q,q,q,q,q) = q

and

2) at most a finite number of modules be non-quiescent at time t = 0.

•

2. ANALYSIS AND FORMULATION OF SYSTEM REQUIREMENTS

The review of cellular models in the previous chapter presents a

diverse and challenging variety. Yet the strongly cellular character of

these models suggests an enticing commonality that we shall seek to ex-

plore and develop in this Chapter. By considering in turn each of the

major characteristics of cellular spaces and by comparing the ways each

has appeared in our examples, we shall work toward a single formulation

suitable for a range of applications.

2.1 Discreteness

Cell spaces are discrete in time and space. Their highly parallel

formulation is inherently closer to the fixed time-step method than to

the next-event method. Moreover, a synchronous or fixed time-step model

is considerably simpler to implement than a next-event model. (Of the

examples of Chapter 1 only Flanigan used a next-event form of simulation.)

Therefore, we shall assume that cellular spaces are synchronous--that is,

that a new state value is calculated for every cell at the same instant

based on the current state of a space, and that the resulting configura-

tion is the state of the space at the next time step.

2.2 Uniform Connectedness

We are concerned with "regular" networks of cells distributed over

space. Holland's ICC model in terms of abelian groups gives the most

24

25

general notion of regular arrangment seen in the several examples. A

more general notion, in terms of finitely generated group graphs, is

suggested by Wagner [16] who recognizes, however, two important reasons

for restricting attention to the finitely generated abelian group

graphs:

1) such groups give rise to many "nice" structures such as planes,

cylinders and toroids, and

2) the theory of such groups is well developed and decidable in

contrast to the general theory of finitely generated groups.

To these reasons we can add:

3) abelian groups give rise to a natural and physically interpretable

coordinatization scheme, and

4) data structures corresponding to the abelian group generator

are rather straight-forwardly implementable while those of the

more general group graphs are not.

Flanigan's use of a hexagonal topology may appear to fall outside

the abelian group formulation, but in fact does not. The hexagonal topology

is easily obtained by choosing as neighbors those cells at coordinates

N «((1,0), (0,1), (-1,1), (-1,0), (0,1), (1,-1)) relative to the central

cell. This is apparent if one imagines the major axes to be at an oblique

rather than right angle. (See Figure C.2 in Appendix C.)

Yamada and Amoroso [19] give a more complex hexagonal example with

cells being centered on the vertices of covering hexagons and three neigh-

bors besides the central cell. Figure 2.1 (taken from Yamada and Amoroso)

shows how to embed this topology in the two dimensional framework by using

oblique axes and introducing "dead" cells at coordinate points {(3m+2+n,n)|

26

(a) HEXAGONAL CELL SPACE

(b) EMBEDDING IN SQUARE CELL SPACE

Figure 2.1 EMBEDDING OF HEXAGONAL CELL SPACE

27

m, n t Z} and suitably extending the transition function . Similar tech-

niques may be used for other configurations.

For all of these reasons this author feels the abelian group founda-

tion represents a good basis for a cellular simulation system. We shall

take advantage of the coordinatization property and represent spaces and

vectors in terms of the more intuitive coordinate notation.

2.3 Size of Simulation and Concept of Quiescence

To perform an actual simulation one is often faced with the problem

of simulating a logically infinite space on a finite computer. A size

must be determined and boundaries specified and even if the space is

finite (and within the capacity of the computer) there is still the task

of defining boundaries.

Introducing boundaries in an "infinite" model raises the problem of

what to do when calculating the transition function of a cell within the

boundary which has a neighbor lying logically outside of the boundary. In

models such as von Neumann and Codd used there is a very natural solution:

structure the cell space data management routines such that when the state

of a cell outside the actual simulation is required, then the quiescent

state is given. This is consistent with the formal requirement that only a

finite portion of the space is non-quiescent and, hence, everything outside

This is handled for this case as follows: The cell state space, let us
call it S, is enlarged by adding a new state D (the dead state) which is
assumed only by the dead cells. For a transition function F, F(s., s-)
= D if and only if s. = D. If s. / D but s_ = D then F(s1, ..., s-) is
determined by s., s., s., and s, only. If s. ^ D and s, « D then Fts,, ...,
s.) is determined by s., 8-, s- and s- only. With such constraints one has
embedded the four neignbor hexagonal space of Figure 2.1a in a cartesian
seven neighbor space.

■

%

28

the actual simulation is quiescent and will remain so by virtue of the

transition function.

A similar technique can be used in many biologically oriented

models by substituting "background" for "quiescent". The simulated cells

can be considered immersed in a "larger" mass of cells whose behavior is

known and fixed. A straightforward extension of this idea is to permit

the background state to be varied as a function of time, or to be randomly

varied from access to access during the same time step, or both.

This is a powerful technique for simulating a large or infinite

space and at the same time it maintains the simplicity of writing the

transition function independent of concern for boundary conditions and

configurations.
.4-

One service that would be very helpful for the simulator to perform

is to monitor the state of cells that are "near" the boundary to detect

states that would, if part of the neighborhood of a cell outside the

boundary, lead to a change of state for such an exterior cell. This would

allow he experimenter to detect a "spread" of non-quiescent activity be-

yond the point where the validity of the simulation may be questioned. This

is, of course, easiest to perform in spaces having small neighborhoods (i.e.

small in distance from central cell) and a well-defined quiescent or back-

ground state. The ideal solution would be for the simulation system, on

detecting such a situation, to expand the boundaries of the actual simula-

tion to include the newly "active" cell and keep going. A more realistic

approach might be to allow the investigator to specify the new boundaries

(subject to the same system constraints on specification as were followed

originally) and then to continue with the expanded simulation.

1*

Alternately one can avoid some edge problems by using Holland's

observation that abelian spaces are easily made cylindrical or toroidal

by adding certain constraints to the group. In some simulations this

kind of "wrapping-around" could be more suitable than the quiescent/back-

ground approach suggested above. (A possible example is the propagation

of a "wave" of activity in a neural network.) This approach also provides

a simple way to "close" a finite group of cells on itself without impos-

ing an unwarranted "stabilizing" effect. Clearly this, too, can be ac-

complished at the level of the data management routines without requiring

any consideration at the level of the transition routine.

Both of the above may be useful where a regular neighborhood con-

figuration is desired. The problem of edges is also reduced in finite

spaces where each cell has an explicit neighborhood completely contained

in the space. Finley's simulation is an example of this.

But sooner or later a boundary must be specified—if only to de-

termine storage requirements in a computer. To this author's knowledge,

no one actually doing cellular simulation, with the exception of Flanigan,

has been concerned with providing boundaries more complicated than simple

rectangles. In his case the boundary was a simple convex polygon. Thus,

until further motivation arises, it should be sufficient to provide a

facility to define a boundary for a cellular simulation as being an arbi-

trary convex polygon. A simple way to define a polygon in a two dimensional

space is to list the coordinates of the vertices in clockwise order.

2.4 Neighborhoods

Once the cell space geometry is determined it is usually possible to

give a uniform specification for the neighborhood. One can think of a fixed

30

template that covers a cell's neighbors when some fixed point of the

template is on the central cell. This concept finds natural expression as

an n-tuple of vectors in the coordinates of the underlying space. The

i element of the n-tuple represents a displacement which when added to

the coordinates of the central cell gives the i neighbor,of that cell.

A single template is defined which is applied uniformly throughout the

space.

In simulations where the neighborhood must vary from cell to cell a

method will be proposed for making that specification part of each cell's

data structure. Further there is no reason that part of the neighborhood

cannot be uniform across the space and part be cell dependent.

2.5 Transition Functions

The writing and rewriting of the transition functions used throughout

an investigation is likely to require a significant amount of an investi-

gator's effort. There is much need, therefore, to make the language for

expressing transition functions both powerful and oriented toward the

particular requirements of cellular simulations.

Transition functions are, by their very definition, local rules of

behavior that are applied throughout the space. A central quality of a

transition function language should be this "localness". Since it is a

function, it will suffice to construct it as a subroutine called by the

simulation executive with the states of neighboring cells as its arguments.

The only characteristic of the cell geometry and neighborhood template that

is essential in constructing the transition function is the number of

neighbors (arguments).

31

2.5.1 Cell Data Structure

Each cell of a space has the same data structure which, except for

the number of computer words required to represent that structure in com-

puter storage, need not be known to the simulation system. It is not the

purpose of this dissertation to develop or investigate languages with

data structure capabilities as such. However, the availability of such

capabilities is believed to be so useful in coding cellular simulations

that basic though powerful data structure facilities will be included in

the particular language exhibited in Chapter 3.

In any systematic approach to data structures an important adjunct

is:

1) an ability to define operators to augment the pre-defined ones

of the language.

and

2) the ability to write constants of the newly defined data types

in a natural manner.

Both of these capabilities will be prominent in the language developed in

Chapter 3.

2.5.2 Parameters Called by Value

The method of calculating the next state of a cell space requires the

simultaneous parallel calculation of the next state of each cell of the

space followed by a simultaneous and instantaneous change of each cell to

that new state. The result is the new cell space state. But a simulation

on any real computer (perhaps excepting IIliac IV) proceeds serially cell

by cell. Clearly the next state of a cell cannot be immediately substituted

<

i

32

into the data structure upon calculation--the cell is potentially the

neighbor of some cell whose transition is yet to be calculated.

This implies that the parameters of a transition function must be

called by value and cannot be modified by the transition function itself.

The value of the function is a state description which must be saved

separately from the current cell space state until each cell's next state

has been computed. When a new state has been computed for all cells, the

next state can be considered the current state and the computation of a

new next state begun.

This can be implemented by using two data areas, each sufficient to

completely represent the state of the space. One area contains the cur-

rent space state and the other contains the next space state while it is

being computed, and the roles are reversed for the successive time steps.

Although this requires twice the storage needed to simply represent the

space state, it is in general the only satisfactory technique.

In some spaces with simple geometry and small neighborhoods, more

specialized techniques could be employed. For example, in the Von Neumann-

Codd simulations at most the equivalent of one row plus one cell need be

stored in duplicate. In more complex cases, one could search for scanning

algorithms that were based on the neighborhood relation in such a way to

systematically complete some "compact" region of cells and expand regularly

from there to eventually cover the whole space. Parnas [13] has developed

some formal techniques for reducing both the space and computation require-

ment of simple spaces and neighborhoods. However, our desire to permit

arbitrary neighborhoods, such as Finley used, and even dynamically changing

neighborhoods, as in Holland's ICC's, clearly implies that nothing short of

full duplication of the cell space data structure will suffice.

•

33

2.5.3 Input-Output

A language for transition functions obviously needs no input-output

capabilities in the usual sense; it is simply a function. However, be-

cause some interaction with the transition function may be quite useful

at various times in an exploratory simulation, some rudimentary I/O *

facilities are recomnended.

2.6 Input to Cell Space

Inputs to a cell space are states which are not specified by the

transition function but which are controlled independently outside of the

cell space. It has been suggested that an additional "dummy" entry be

included in the neighborhood of each cell which, by convention, is not

the state of some cell but rather input for the central cell. This has

the conceptual inelegance of grouping two quite different functions into

the neighborhood concept. Further, all "real" neighbors of a cell have

states drawn from a common state space, while the state space of the input

will quite likely be different.

Yamada and Amoroso [19] formalize input as a set of possible transition

functions that may be applied to the space. The input determines which

transition is used on any given time step and the same one must be used

for every cell in the space. This, however, does not permit modeling

of spacially distributed inputs.

Yet another approach is to consider certain cells to have their states

controlled externally and not by the transition function.

Because none of the above notions of input is sufficiently flexible

to fulfill a variety of requirements, we have developed the following quite

different approach. Consider that there are a finite number of input streams.

■

34

An input stream is a function of time only with values in some designated

state space. Which stream is used as the input of a given cell is desig-

nated by the value of a substate of that cell's data structure. This

permits input to be spacially distributed in a natural manner (even with

dynamically changing spacial distributions) and the state space of the

input to be conveniently distinct from that of the cell itself. Alter-

nately, if the input state space and cell state space (except for the

input designation) are the same, then the transition function can, under

appropriate conditions, assign the input value as the state of the cell.

2.7 Output and Monitoring of Cell Space

In spaces with quite simple state spaces, the state is readily

represented by one of a small number of distinguishable graphics. Of

crucial importance is the ability to see the states of cells in their

spacial arrangement. In working with a complex state space, consisting

perhaps of several independent substates, it is difficult to represent the

full state of many cells in a compact and intuitive manner. There is

little previous experience to draw on. Our experience indicates that one

does not usually need to know the full state of a group of cells; rather

some characteristic property (often a particular substate) is sufficient

to convey the desired information.

Such properties may be computed by a set of auxiliary functions which

we refer to as mope or mapping functions. Each map is a function from the

cell state space into some distinctive set of symbols. These symbols are

We admit to being motivated in part by the available hardware. The
display (a D.E.C. 338) has a character generator that allows faster execution
and more compact data tables than in other plotting modes. Moreover, the

35

chosen to be heuristically suggestive of the value of the property rep-

resented and uniform in size to permit easy presentation on CRT display.

We have adopted the strategy of having the state of a cell mapped

into a "character" to be used to represent its state to the experimenter.

After each update of the state of the space, the display mapping can be

computed for each cell of the space, id the resulting graphics displayed

in their spacial arrangement. Provision should be made for several such

mapping functions, perhaps with distinct character sets, to be able to

view different aspects of the space state.

2.8 Interactive Requirements

A range of commands will be required to effect control of a cellular

simulation. A list of such commands could be made arbitrarily long as

more and more general and powerful commands are constructed and more

specialized requirements included. The following kinds of capabilities

are minimal and should be included in any cellular simulation system.

1) Specify important characteristics of a cellular simulation:
transition function
neighborhood
boundary
edge convention, etc.

2) Simulate for a given number of time steps while monitoring the
behavior.

3) Change the display mapping function used to designate cell state
characteristics.

4) Provide general capabilities for changing the state of individual
cells.

character set is user defined from control tables in a reserved area of
memory so that a "character" may in fact be any figure that is desired.
At most 128 such characters may be specified, of which one must be an
"escape character mode" pseudo-character.

36

5) Provide a capability for interacting with the transition function
itself, to change parameters, etc.

6) Provide a mechanism for a transition function to indicate a
"not-defined" condition and perform interaction with user to de-
termine what to do without upsetting the logical integrity of the
simulation.

7) Save a given cell space state with appropriate identification for
later possible use. The saved data should contain sufficient co-
ordinate information for the purposes of the restore operation.

8) Restore the current cell space state from a given named file area.
If boundary information differs, provide an option for keeping
the parts that overlap.

9) Provide facilities to conveniently define input streams.

2.9 New Language or Old?

Available languages do not provide the kind of data structure flexi-

bility that is important in cellular simulation. Simulation languages

are typically orientated toward models with diverse elements with ir-

regular interconnection topologies; they are concerned with statistical

measurements such as average waiting time, length of queues, etc. and

usually ignore the problem of simultaneous change of state of independent

elements of the model. All of these characteristics make available

languages awkward tools at best for performing cellular simulations.

New language constructs and the attendant checking and enhanced ex-

perimental useability are important to successful exploitation of cellular

space models. We have given a formulation of cellular spaces that is

broad enough to cover a variety of applications and rich in structure not

provided by existing general purpose languages. In Chapter 3 a new

language encompassing our formulation is developed which will substantially

aid in conducting cellular simulations. It should be understood that while

the author has implemented this language, it is the suitability of the

37

language that is important, and not his particular implementation. Most

important is that the language, however implemented, be suited to the task

of simulating cellular spaces.

2.10 Formalization

This section concludes by formalizing the structure of the class of

models realizable in our system. This characterization is based on the

simulation system actually implemented in order to more concisely describe

that system. It is presented here because the notation will be useful

later in describing some of the details of the actual system.

Let Z be the set of integers both positive and negative; then Z ■ Z

is an infinite two dimensional cartesian plane which we call P. Sp is a

cellular space iff

Sp C P u E

where card (E) = 1 and E O P = $, and Sp O P is circumscribable by a convex

polygon.

Edge effects are defined by a function

e: P ■* Sp

such that

Va[a c Sp s^e(a) ■ a].

The function e provides the mechanism for "wrapping around" to form cylinders,

etc., as well as supplying a "default" state for neighbors outside of Sp;

the constraint preserves the identity of cells within Sp.

Implementation of such a new simulation language may be possible in one
of the emerging "extendable" languages, such as MAD/I. Unfortunately none
was available in a form suitable for our use. We have worked entirely in
assembly language for the IBM 1800.

•

38

Hie general neighborhood N, i.e., common to all cells of the space,

is an ordered set of elements of P:

N = (A., A-, A) where each A, e P
X & It x.

The A. are displacements from the central cell.

The state S of a cell consists of three parts:

S * X ■ N' ■ M

where

X is normally interpreted as the cell state

N* is the local neighborhood, and

M is an input selector.

While X is the part that is usually considered the "state" of a cell, the

formal inclusion of N* and M will be exploited to provide dynamically

changing neighborhoods and inputs. In particular N* may be functionally

dependent on the time step and location while N is independent of both.

The total neighborhood of a cell a e Sp is simply N (a,t) » N ♦ N'(a,t),

where "•»■" here means the ordered concatenation of ordered sets.

Input is defined as a function of an index, or selector, and time:

I: {1, ...» m} ■ T -► Q

Each I (m,•) represents an input stream, and which input stream corresponds

to a cell is determined by a substate of the cell data structure. Tne

input to cell a is thus given by

I (M(a,t), t).

The transition function f,

f: S ■ S ■ ... • S ■ Q -» S

äy

S(a,t*l) = fCsCeCa+Aj), t), S(e(a+An+n,), t), I(M(a,t), t)

Note that edge effects are incorporated within this formulation.

Output functions 0. map from the state space to a finite number of

displayable graphics:

0.: S * {Gj, Gn},n ^ 127.

•

3. A LANGUAGE FOR CELL SPACE SIMULATION

The Cellular Space Simulation Language is a procedure oriented

language designed to facilitate the writing and simulation of cellular

space models. It provides a full complement of arithmetic and logical

operators; a facility for defining structured data types and operators

on those data types; and various data types, operators, and statements

intrinsic to the simulation environment in which the translated object

program will be executed.

The grammar for the language is syntactically an operator grammar.

The lexical format is free form with respect to the input medium. The

basic logical unit is the construction (terminated by a semicolon) in

order to facilitate error recovery insofar as possible. Statements

are one or more concatenated constructions. A sequence of statements

is a program.

In describing the language we shall use the following conventions

and notations. Example sections of source coding will be on separate

lines with double indenting to keep them distinguished from the describing

text. Source words are always in capital letters and this is also a

useful cue. Syntactic descriptions of the language grammar will use

a variation of the more common BNF notation.

Syntax will be described in its production (rather than reduction)

form, e.g.,

<A> •+■ B <C> ■•s*.

which nay be read "the non-terminal symbol <A> may be replaced by the

40

41

symbol B followed by the non-terminal <C>". Tall square brackets will be

used to designate several mutually exclusive possibilities, of which one

must be present. Thus,

<A> <C>
X <L>

B

may be considered a shorthand for the two productions:

<A> ■*■ X <L> <C>

<A> -»• B <C>

the latter will often be simplified by not repeating the left side, as in:

<A> -* X <L> <C>

- B <C>

Curly brackets will be used to indicate a sequence that may be repeated an

arbitrary (possibly null) number of times. If sub- and superscripts follow

the right bracket, they are interpreted as minimum and maximum number of

repetitions, respectively. Thus,

<A> ■*■ X {Y}

describes the same collection of terminal strings as

<A> ■»■ <A> Y

* X

and

is shorthand for

<A> ->• (X)^ z

<A> ■* xz

-»■ xxz

-♦• xxxz

■

42

We will not be concerned here with the subtleties of the differing parsing

trees that might result from alternate interpretations of these shorthands.

We distinguish between a description grammar which is used to convey the

language to users, and an implementation grammar which is used explicitly

for syntax directed parsing. Since we are primarily concerned with

describing a language, the above conventions are both a convenience and

in some cases more intuitively meaningful than a comparable BNF expression.

We admit that this dichotomy of grammars leaves ample opportunity for

conflict and inconsistency between the description and the implementation.

But since the compiler currently implemented used syntax directed methods

only at the level of expressions and assignment statements, there is no

formal implementation grammar for many aspects of the system. Accordingly,

we will not be too embarrassed to occasionally use a suggestive non-terminal

symbol such as <integer constant> without anywhere giving a syntactic

definition of the symbol. The intention will be clear, and will accurately

convey much semantic information about what is actually required by the

compiler.

Summaries of the syntax, keyword tables, etc., may be found in Appendix

A. Implementation of the compiler is discussed in Appendix B.

An example of a transition function written in this language is

exhibited and discussed at the end of this Chapter. The reader may find

it helpful to refer to Figure 3.3 for examples while reading the Chapter.

3.1 Procedural Aspects

3.1.1 Lexical Format

The lexical unit of the language is the atom. An atom is defined as

1) any of the non-alphanumeric characters except spaces or

' /

43

quote, e.g. ♦ - / %,

2) any string of alphanumeric characters delimited by

non-alphanumeric or space or quote (period is considered

a numeric and dollar sign an alphabetic),

3) any string of characters enclosed in quotes, (a quote

character may be included within a quote string by two

quotes in succession).

Note that space itself is never an atom and may always, and must sometimes,

be used as a delimiter between atoms. For example, 123 is one atom while

1 2 3 is three atoms.

Lexically a oonstruotion is any sequence of atoms (except semicolon)

which is followed by a semicolon. Note that the semicolon is considered

part of the construction. Thus, the following construction consists of

14 atoms:

AX = A(5) ♦ B[l, P$T];

A atatement consists of a given number of constructions concatenated

together and satisfying certain constraints. The statements of the

language will be developed in detail shortly.

A numeric atom is an alphanumeric atom consisting of only numeric

characters and at most one period. An alphabetic atom is an atom of only

alphabetic characters. A \-atom is an alphanumeric atom which is not a

numeric atom and not a reserved atom (i.e., not used as a keyword or for

any other predefined purpose). A-atoms may be used as variable names or

labels, defined as operators, etc.

If the first atom of a construction is a X-atom and the second a colon

then the A-atom is implicitly defined as a constant of type LABEL. (See 3.1.2).

44

In general, the language allows only one kind of use for an atom.

For example, no atom could be both a defined data type name and a label

even though the correct use could almost certainly be inferred from the

context. However, the dual use of "-" (minus sign) as both a unary and

binary operator is so pervasive that it has been explicitly accommodated.

3.1.2 Primitive Data Types

The primitive data types of the language are:

1) INTEGER

2) REAL

3) BOOLEAN

4) LABEL

5) TEXT

6) FUNCTION

Each of the above atoms is a keyword whose use in the language is re-

served for this particular purpose.

In general, the variables of the language may be of any of the above

types. Constants of the above types will be recognized by their lexical

properties as follows:

1) An INTEGER constant is any numeric atom without a period.

2) A REAL constant is any numeric atom containing exactly one

period.

3) BOOLEAN constants are the atoms TRUE and FALSE.

4) LABEL constants are any A-atom that occurs in the label field

of a statement.

to

5) TEXT constants are recognized by their containing quotation

characters.

6) FUNCTION name constants must be explicitly declared as

explained later.

3.1.3 Declarations

There are two general declaration statements: DECLARE... and DEFINE..

The first simply assigns a given attribute to each of a series of X-atoms.

The form of the statement is: " ■

DECLARE <type>: <A-atom list>;

For example:

DECLARE REAL: A, B, C;

DECLARE INTEGER: X, Y, GEORGE;

would establish A, B, and C as real valued variables and X, Y, and GEORGE

as integer valued variables.

Acceptable X-atoms for the <type> are any of the primitive data type

names or any of the defined data type names (as explained below).

TVo types of composition operations are available to generate data

structures more complex than the primitives. TTie simpler of these is the

fixed length array. The form is:

DEFINE «a-atom> ARRAY <type> SIZE <integer constants

The interpretation is that the first <X-atom> is defined as a <type> name

which identifies a data structure consisting of a fixed number, given by

the <integer constant?, of elements all of which are of type given by

the <type>. Tims, to declare A an array of five reals and B a square

array of seven by seven integers one writes:

■

46

DEFINE REALS ARRAY REAL SIZE 5;

DECLARE REALS : A;

DEFINE INT7 ARRAY INTEGER SIZE 7;

DEFINE SQINT7 ARRAY INT7 SIZE 7;

DECLARE SQINT7 : B;

The second composition operation provides for the definition of a

block of contiguous data whose elements may be of diverse types. Blocks

have also been called component structures or structured variables. The

form of the statement is:

DECLARE <X-atom> BLOCK [<type list>];

For example:

DEFINE QQSV BLOCK [REAL, INTEGER, INTEGER];

specifies that QQSV is a type name referring to a block consisting of a

real number followed by two integers.

Either operation may be composed either with itself or with the other,

thereby allowing complex data structures to be constructed in hierarchical

fashion. By convention, the same structure may not be given more than one

name.

Components of a complex data type may be identified by a subscript

following the data name. Subscripts are interpreted from left to right

as identifying a lower data type in the hierarchical description of the

data structure. Figure 3.1a presents a somewhat involved example.

In order to conveniently refer to primitive elements of a cell's data

structure, we shall sometimes speak of an ordering of the fields of a data

structure. A field is a substructure which has a primitive type. Field

f precedes field f- if in the subscript notation for referring to the

respective fields, the subscript designation f. lexigraphically precedes

<

47

DEFINE INT3 ARRAY INTEGER SIZE 3;

DEFINE QQSV BLOCK [REAL, INT3];

DEFINE VSQQ ARRAY QQSV SIZE 3;

DECLARE VSQQ: ABC;

ABC

ABC (2)

ABC (2,1)

ABC (1,2)

ABC (3,2,1)

ABC (1,2,7)

Is of type VSQQ

QQSV

REAL

INT3

INTEGER

undefined

3.1a

INTEGER

Field 1 2 5 6 8 9 10 11 12

3.1b

Example Data Structure Definition and Related Notation

Figure 3.1

48

the subscript designating fJ. In Figure 3.1a, ABC (1,1) precedes

ABC (1,2,3) which precedes ABC (2,1), etc. Since this clearly gives a

linear ordering, we shall speak of the first field, second field, etc.

(One may equivalently think of drawing the "structure tree" of a data

type, and then numbering the endpoints from left to right as illustrated

in Figure 3.1b).

Either unary or binary operators may be defined on any available types.

If a previous operator definition exists, it is replaced. A precedence

is required for binary operators to place each new operator in appropriate

relationship to other operators.

An operator definition consists of 1) a header statement, 2) a

'/Ody consisting of a sequence of statements written in the language and

3) the "ENDOPR;" statement.

The forms of the header statement are:

DEFINE <A-atom> UNARY <type>, <type>;

DEFINE <A-atom> BINARY <integer>, <type>, <type>, <type>;

Each of the <type> names must be previously defined. The <integer>

gives the precedence and the last <type> gives the type of the result.

The other <type> (s) specify the required arguments.

The body of the definition may be empty. If it is, then a subroutine

CALL to the operator named will be generated with two or three arguments

which are addresses of the appropriate data. If the body is non-empty,

then it will be assumed to define a routine to compute the needed result.

Arguments may be referred to by the form % <integer> where the ordinal

value of the integer constant specifies the argument.

« I

49

The last statement delimits the scope of the operator definition.

As an example, suppose that variables of type REAL3 are being used

to represent vectors in a three dimensional (physical) space. An operator

1 2 for evaluating the dot product of tvfo vectors might be defined as follows: '

DEFINE REAL3 ARRAY REAL SIZE 3;

DEFINE $D0T$ BINARY 15, REAL3, REALS, REAL;

%3 = %1(1)*%2(1) + %1(2)*%2(2) + %1(3)*%2(3);

ENDOPR;

The PARAMETER declaration is designed to allow mnemonic names to be

used in place of integer constants (primarily when used as subscripts.)

This declaration is recommended to resolve the awkward choice resulting

from block data types. A numeric subscript is non-intuitive but gives

a known compile time data type, while a heuristically choosen and suitable

valued variable does not permit a known compile time data type. Use of

a parameter removes the problem.

The form of the statement is

PARAMETER { (\{,}l <integer constant>)};

It consists of a series of ordered pairs. The first of the pair is

replaced by the second whereever encountered. For example the following

Note the quite different meanings of the words "dimension" and "vector"
when used in their physical and computer science senses. In this example,
a three dimensional vector in physical space is represented by a one
dimensional array (vector) or size (length) three.

Although not necessary, we find it convenient to use X-atoms whose
initial and final characters are dollar sign as binary operators, and
A-atoms with final (and not initial) dollar sign as unary operators.
This practice is followed through out this thesis.

50

PARAMETER (XYZ 12) (ALPHA, 0);

X ■ ABC(XYZ, ALPHA);

is equivalent to

X ■ ABCCia.O);

Note that the parameter substitution becomes effective at the point

of definition and is not retroactive to previous statements. Also, note

that parameter atoms may not be "chained". Further, the substitution

is actually performed before syntactic parsing and hence, the integer

constant is actually used by the parser. This permits the type result

of a subscript of a BLOCK structure to be known at compile time.

3.1.4 Executable Statements

The basic executable statements of the language are an assignment

statement, an unconditional branch statement, conditional branch

statements, and an iteration statement. Several miscellaneous statements

are also available.

3.1.4.1 Assignment

The most basic statement of the language is the assignment state-

ment. The most succinct way to present the acceptable forms of this

statement is via the productions of a grammar. Such a description is

found in Figure 3.2.

The following observations are made about this description:

i>i

<assign ment> -♦■ <left des> = <exp>

<left des> -»■ X

-f X (<exp list>)

<exp list> -> <exp>

-♦• <exp list>, <exp>

<exp> -► <exp> 6 <exp>

•* *» <des>

-> <des>

<des> -► <left des>

■+ (<exp>)

■+ XI (<exp list>)

-* X!

-*■ <lsv>

<des> ■+ (<assignment>)

<lsv> -* [<exp list>]

Syntax of Assignment Statement
Figure 3.2

52

1) The symbols X, 6, and ^ are not particular terminal symbols but

designators for the class of X-atoms, binary operators and unary operators

respectively. The lexical parsing actually performs the necessary assign-

ment of an atom to these classes, if appropriate, prior to parsing.

2) An explicit "operator", i.e. the exclamation mark, is used to

designate function calls. This convention is similar to that of MAD [12];

however a different atom has been chosen to avoid another usage for the

period (which is used in MAD).

3) In this descriptive grammar the production

<exp> •* <exp> 6 <exp>

obviously introduces an ambiguity into the resulting language. In contrast

to typical applications, the grammar rules are not used here to establish

the relative precedence of a multitude of binary operators. In contexts

where an ambiguity exists in parsing an input string, as for example in

A + B * C

the order of association is resolved by an extra-grammatical attribute of

all binary operators, its (single) precedence value. The resulting

organization has the virtue of making the grammar invariant with respect

to the number and relative precedence of binary operators, and accordingly

new binary operators can be introduced with absolutely no impact on the

syntactic parser.

A special compile time binary operator, atom "@", is used for various

purposes. The operator accepts as a left operand an argument of any type

and as right operand only an argument of type TEXT. The intention is to

allow ad Jioc extentlons to the compiler with a minimum of effort. Three

53

immediate applications are the following:

Where BLOCK data structures are used with variable subscripts, in

general the <type> of an expression is not determinable.

For example:

DEFINE ABLE BLOCK [INTEGER, REAL]; DECLARE ABLE: MARY;

X » MARY (I);

MARY (I) will be of type INTEGER if I has value 1, and type REAL if I has

value 2. However, the compiler does not support dynamic data types at

run time, and the type of every (sub-) expression must be known at compile

time. Thus, the above assignment could not be compiled as it stands.

By using the @ operator followed by a <type> atom, such situations may be

resolved.

Thus,

X = MARY (I) 8 "INTEGER";

would compile and treat MARY (I) as an integer regardless of the value of

I. The operator may also be similarly used to override a known <type> in

favor of a different one.

At some point it may be desirable to introduce new primitives

which have lexically the same constant forms as existing ones. 0.5 is

the most natural lexical representation whether the atom is REAL or FIXED-

POINT. But

0.5 g "REAL"

0.5 e "FIXEDPOINT"

clearly indicates which conversion is desired.

54

Real constants in the commonly available scientific (or E-) format

can be conveniently introduced by using the exponent as the second

argument thus:

0.5 § "£25"

1.873 § "E-6"

3.1.4.2 Unconditional Branch

The form of the unconditional transfer is

GOTO <exp>;

where <exp> is of type LABEL. Control passes to the statement with

the designated label.

3.1.4.3 Conditional Branch

The conditional branch statements are of the following forms:

IF <exp>;

ORIF <exp>;

ELSE;

ENDIF;

These are interpreted the same as the compound conditional in the 7090

MAD language [12]. In particular, note that exactly one "ENDIF;" must

follow the "IF..." to determine the scope of the sequence. The

"ORIF..." may be used any number of times, and the "ELSE;" at most

once. These statements delimit mutually exclusive sequences of statements

of which the first true condition will enable its corresponding body

to be executed.

If IF, ORIF, ELSE, and ENDIF represent their respective statements

and a any valid sequence of statements, then the following defines legal

uses of the conditional branch:

55

<legal IF> -»■ IF a{ORIP a} {ELSE o}J

3.1.4.4 Loop Statement

Hie loop statement is of the form:

LABEL1: LOOP <assignment>; <exp>; <exp>;

END IF

LABEL2: ENDLOOP;

LABELS: ...

Tlie interpretation of this statement is similar to that of 7090 MAD.

The left side of the assignment specifies the controlled variable for the

loop. The assignment is performed, then the second expression is evaluated.

If TRUE, the loop is terminated; otherwise, the loop body is executed.

The loop body may not be executed at all. The ENDLOOP statement returns

control to the loop header statement where the controlled variable is in-

cremented by the first expression and the termination test performed again.

For example:

I = 5;

LOOP X(I) = DATA(I); ÜATA(I); X(I)GT 0;

X(I) = 0;

ENDLOOP;

is equivalent to

I = 5;

X(I) = DATA(I)

GOTO Tl;

T3: X(5) = X(5) + DATACI);

Tl: IF X(I)GT 0;

GOTO T2;

• i

56

BNDIFj

X(I) = 0;

GOTO T3;

T2: CONTINUE;

3.1.4.5 Miscellaneous Executable Statements

The miscellaneous statements include:

1) CONTINUE;

This serves as a convenient way to introduce a label.

2) EXECUTE <exp>;

This allows direct subroutine calls.

3) PRINT <exp. list>;

READ <X-atom list>;

These are not properly part of the simulation language. They are included

for diagnostic and developmental purposes and may be a suitable nucleus

for I/O statements of a "free standing" language. They are also a convenience

in developing and debugging transition functions.

4) RETURN;

This statement terminates the transition function and returns control to

the run time system.

5) ENDPROG;

This indicates the physical end of the program.

If program execution "flows into" this statement it will be functionally

equivalent to a RETURN.

57

3.1.5 Literal Structured Variables

A literal struatured variable (abbreviated LSV) is a non-primitive

variable or constant whose data structure is explicitly represented in

its lexical representation in a rather natural manner. For example,

if data type ALPHA is defined by

DEFINE ALPHA BLOCK [REAL, INTEGER, INTEGER];

then [1., 2, 3,] is an instance of a constant of type ALPHA. Further

if:

DEFINE BETA ARRAY REAL (2);
DEFINE GAMMA BLOCK [INTEGER, BETA];
DECLARE BETA: ABC;
DECLARE GAMMA: DEF;
DECLARE REAL: X;

then [1, [2., 3.]] and [1, ABC] are LSVs of type GAMM.

Literal structured variables may be used anywhere to the right of

an assignment operator where a variable of the same type would be used.

To continue the last example, if = (assignment) is given its usual inter-

pretation, then the statement

DEF = [1, [5., 7.]];

would be functionally equivalent to

DEF[1] - 1;
DEF[2,1] = 5.;
DEF[2,2] = 7.;

and

DBF = [2, ABC]

would be equivalent to

58

DEF [1] = 2;
DGF [1,1] = ABC [l]j
DEF [2,2] = ABC [2];

More generally

DEF * [I, ABC + [X, 0.5]];

corresponds to

DEF(l) = 1;
DEF(2,1) = ABC (1) + X;
DEF(2,2) = ABC (2) + 0.5;

The above examples illustrate the meaning of operations involving

LSVs and do not describe the order in which the computations are performed.

See Appendix B for a discussion of the implementation of LSVs.

An LSV has a <type> which may be inferred from its lexical form.

Thus, in the above examples, the occurrence of [1, [2., 3.]] is sufficient

to recognize that its type is GAMMA. Accordingly, there must be a declaration

for each type of LSV that may occur.

Subscripts may not be used with LSVs, e.g. ,

[1. [2., 3.]] (2)

is not an acceptable alternative for

[2., 3.]

While such an interpretation is quite natural in the context of the present

development, it does not add anything to the language, and indeed, detracts

by allowing the user to obscure what computation is being performed.

We note that structured variables are not manipulated via pointers,
i.e., the whole data block is physically moved during an assignment operation.
However, there are certain approaches that can be used to minimize physical
data movement with an LSV.

59

3.2 Simulation Oriented Aspects

Certain data type names, operators and statements arc included in the

language explicitly for the simulation model. These will be described

in three groups: data structures, entry points, and operators.

3.2.1 Data Structures

3.2.1.1 Cell Data Structure

The X-atom CELL is reserved as a <type> naming the data structure for

the cells of a simulation. The user must include a "DEFINE CELL..."

statement that specifies this information. The global variable NEWSTATE

is implicitly declared to be of type CELL. The value of NEWSTATE becomes

the value of the current cell on the next time step. The value NEWSTATE

on entry to the transition function is the current state of the current

cell. Thus substructures not assigned new values by the transition function,

if any, will remain unchanged.

The preferred way to refer to cells is as elements of the array variable

CELLS. Thus, CELLS (1) is the first neighbor of the current cell, CELLS

(2) is the second, etc. Further subscripting may be used to refer to

substructures of the cell data state. One may imagine that the following

declarations have been made:

DEFINE CELLARRAY ARRAY CELL SIZE ?;

DECLARE CELLARRAY: CELLS;

where the size of the array may not be known at compile time.

One may of course assign a value to a variable, e.g., LN, and then write
CELLS(LN) to refer to the "left neighbor" if such mnemonics are convenient.
Chapter Five comments further on this naming problem.

•

60

1

The declaration

DIMENSION <integer>;

is used to implicitly define the attribute type COORD as

DEFINE COORD ARRAY INTEGER SIZE <integer>;

Variables of type COORD are interpreted as relative vectors in the coordinate

space of the cell space.

Moreover, it is permissible for the definition of type CELL to include

one or more components of type COORD. This allows the cell state itself to

specify some (or all) of its neighbor cells. Since this specification is

used at run time and is part of the cell state specification, it follows

that a dynamically changing neighborhood can be modeled. The neighbors

specified in the current cell by components of type COORD are automatically

accessed and made available as neighbors through subscripts of variable

CELLS. No explicit attention need be given to the difference between the

general neighborhood and the local neighborhood, except that the local

neighborhood can be changed for successive time steps by the transition

function.

A variable called INPUT may be accessed to obtain the input to the

current cell provided:

1) A component of attribute type SELECTINPUT is included in

the definition of attribute type CELL, and

2
2) An attribute type is DECLARED for the variable.

The linkages to input routines are specified at the time of loading

the simulation system. Note that the component of type SELECTINPUT is

In the current implementation, the DIMENSION is fixed at 2 and may not be
changed.

2
In the present implementation, the attribute type is predefined as INTEGER

and may not be changed.

■ —— .i —'■ '■ " i --i—— ;

61

an integer whose value may be changed at run time.

3.2.1.2 External and Initial Cell States.

The cell state to be used for the external cell is declared via:

DECLARE EXTERNAL: <value>;

The value must be a variable or constant which is of data type CELL.

It may be an LSV provided no operators are present.

Similarly, the initial state of the space may be declared by:

DECLARE INITIA,'. <value>;

where the <value> is as above.

Declaring either of the external or initial states is optional. If

no initial state is given, it is the users responsibility to establish his

desired starting state. If the EXTERNAL state is not declared and an

external cell state is required by the simulator, a vector of all zeros

will be used. (See the discussion under Default Specifications, 3.2.4.)

3.2.1.3 Neighborhood, Size of Space and Edge Declarations.

The declaration

DEFINENBHD {<coordinate>}1Jax;

is used to define the general neighborhood relation, common to all cells

of the space. <coordinate> is a constant LSV of type COORD. Neighbor

cells correspond with subscripts of variable CELLS in the order given in

the neighborhood definition. The five neighbors so commonly used might

be defined thus:

DEFINENBHD [0,0] [1,0] [0,-1] [-1,0] [0,1];

This might be done with the U command or from a previously saved state,
as discussed later.

'

■ ■ ■■■■. ■■ .

62

If data type CELL contains elements of type COORD, these will correspond

with successive subscripts of CELLS in the order in which they occur in

the specification of type CELL (i.e., following the numbers for general

neighborhood).

To specify the size of a simulation, use

DEFINESIZE {<coordinate>}™ax;

where <coordinate> is an LSV of type COORD. For example

DEFINESIZE [-5,-5] [-5,5] [5,5] [5,-5]

defines a square array of eleven by eleven cells. At least three coordinates

are required to define a polygon. Coordinates are assumed to be given in

clockwise rotation around the figure.

Hie action of the simulator when accessing states for cells outside

the space boundaries (as discussed in 2.3) may be one of several standard

options, or the experimenter may elect to specify his own.

The declaration is

<label>

DEFINEEDGE XWRAP

YWRAP

m TORUS t

If a <label> is given, the <label> is defined as an entry point to a

procedure to perform the desired action. At entry the global variable

LOCATE of type COORD contains the coordinates needing modification. The

edge routine should modify LOCATE to lie within the cell space and RETURN.

Alternatively, if a RETURN is executed with LOCATE unchanged, then the

The ordering used is the lexigraphic order defined earlier.

 ; __—.,.

1

63

System will attempt to use an EXTERNAL cell value.

The declaration is optional. If not used, any reference outside the

space will access the EXTERNAL cell value.

Intuitively the XWRAP option causes the right edge (increasing x

direction) to be "wrapped around" and made adjacent to the left edge (de-

creasing x direction). Since the shape of the space may be any convex

polygon, rows of constant Y may be of differing length. Thus each row

will be wrapped independently of the others. YWRAP is similar. The TORUS

option wraps in both directions simultaneously. (Care must be taken to

handle cells that exceed the X and Y limits simultaneously in order to

be able to define the wrapping). Note that if the space is rectangular,

these options will give the usual respective cylindrical or toroidal

geometries in a Cartesian space. If the shape is not rectangular, these

transformations are at least well defined (and, I venture, at least as

reasonable a notion of wrap around as can be formulated).

TTie actual transformations are tedious to define. They are given in

Appendix C (Section C.2.1).

3.2.2 Entry Points

In addition to the transition function itself it is desirable to

include in the same body of code several entry points to procedures for:

1) Providing certain commands intrinsic to the particular model
being simulated.

2) Providing the needed MAP functions for displaying cell states.

The name of the transition function itself is declared via:

DECLARE <X-atom> NAME;

the <X-atom> must also satisfy the naming conventions of the operating

-,'

64

system and is intended to identify the object code to the operating system.

Experience has shown the utility of two additional entry points, to

perform certain operations before and after a full transition of the cell

space has been computed. Accordingly the declarations

DECLARE <A-atom> PRETRANSENTRY;

DECLARE <X-atom> POSTTRANSENTRY;

are provided. These enable the transition routine to accumulate certain

kinds of statistics or perform other kinds of "housekeeping" services

for the transition function.

Entry points to mapping functions are declared thus:

DECLARE <X-atom> MAPENTRY <integer>;

The <X-atom> is a label in the program. The <integer> must lie in the

range zero to nine and associates an external number to be used to select

that map.

The mapping function has one implicit parameter, the variable NEWCELL.

The result of the map must be an integer in the range 0 to 126 which identifies

the graphic image that will be used to display the cell state. The result

is made known to the system by assigning the value to the system defined

INTEGER variable GRAPHIC.

Typically one map will be desired for each field of a cell's state,

but any others may be used as desired.

The "user" entry point is declared thus:

DECLARE <A-atom> USERENTRY;

The X-atom, a LABEL, so declared is the entry to whatever personal commands

the experimenter wishes to define with his particular simulation. This

entry point is entered as a result of typing the "U" command on the keyboard

Äi. - -

6b

followed by a text string as explained in the next chapter. This string

is collected and made available to the USER entry in the system defined

integer array USERINPUT. USERINPUT (1) is the length of the array for this

call. The array will contain one integer (the character code) for each

character and a three entry sequence for each converted data constant.

The form of a converted data constant is 1) the character for "=" (equals),

2) one of the characters "B'!, "I", or "R" for BOOLEAN, INTEGER, or REAL

designating the type of the constant and 3) the value itself. For example,

the typed input string

uAlB=I-70 ^RS^BTRUE"

results in the USERINPUT array containing:

USERINPUT (1) = 14
= code for letter A
« code for letter 1
s code for letter B

code for letter =
code for letter I
integer value -70
code for letter space
code for letter =
code for letter R

■ real value 8.2
* code for letter =
= code for letter B

USERINPUT (14) = boolean value TRUE

This allows a reasonably complex command interpreter to be written quite

easily.

To allow for command checking and reporting of ill-formed user commands,

the USER routine must set the system defined BOOLEAN variable USEROKAY

either TRUE or FALSE to indicate the command was accepted or rejected,

On machines where the representation of real values requires more memory
(words, bytes) than integers, this (unfortunately) must be explicitly
recognized by the USER routine in scanning the USERINPUT array.

■ 4

66

respectively. A rejected command will be reported to the experimenter

via the console keyboard-printer.

3.2.3 Operators

Hie unary operator UNDEF$ requires an operand of type TEXT. It is

basically a call to the run time system declaring that (for what ever reason)

the transition function for the current cell is undefined and a value can

not be returned. A later section will discuss the effect this has on the

system and actions men to the user for handling this situation.

3.2.4 Default Specifications

Careful attention has been given to designing the system with a

natural set of default specifications for use where some declarations

are not given by the user. The following default conventions have been

adopted:

SELECTINPUT need not be used. If not used, no input is possible.

EXTERNAL and INITIAL state values have a default specification con-

sisting of an appropriate number of (machine) zeros to "fill-up" a constant

of type CELL.

Pre- and Post-transition entries need not be declared.

OEFINENBHD will default to the standard five neighbor neighborhood:

[0,0] [1,0] [0,-1] [-1,0] [0,1].

DEFINESIZE will default to the largest square array that can be

2
accommodated by the implementation.

On the current computer, hardware zeros will interpret as a BOOLEAN
FALSE, an INTEGER "O", and a REAL "O.O".

2 Currently 32 by 32 as follows: [1,1] [1,32] [32,32] [32,1].

1 ' —■-- '

innnrpirr ■ ■ ■ — ■

/

67

DEFINEEDGE will default to using the EXTERNAL state value.

A default USER routine that will always respond with an error to

any input is provided. When RETURNing from a USER routine it is only

necessary to explicitly set the value of USEROKAY if it is to be TRUE.

All maps default to returning a value of zero.

3.3 An Example: MODS

As a simple example we shall consider a cellular space in which the

computational aspects of the transition function are trivial. The transition

function simply computes the sum modulo 8 of the neighboring cells. We

shall use the common five cell neighborhood. With appropriate choice

of initial states such a cell space will exhibit a behavior that is

esthetically quite pleasing to observe.

In order to make the example a bit more interesting, the state of

each cell is defined to consist of a SELECTINPUT field as well as the

INTEGER field that represents the "logical state". The transition function

tests the SELECTINPUT field and if non-zero assigns the next cell state

from INPUT rather than doing the normal computation. (One can imagine this

as providing a "forcing function" in the cell space.)

The transition function and cell space specification is shown in Figure

3.3 to which the following annotations are offered:

Lines 1-5 simply declare the various entry points. Lines 6-8 define

the CELL data structure and declare some variables. Line 9 declares what

state is to be used for external cells. Lines 10-11 define the size and

Lines in the program listing are referred to sequentially from the begin-
ning of the program or relative to a program label. Comments and blank
lines are not included in this count.

1

! 68

*TIIIS IS THE NAMH Of: THE TRAflJI I Tl OM ROUTINE ;
DECLARE MÜDC flAflE;

•THESE DECLARE THE USER AMD 3 MAP ENTRIES;
DECLARE JSERR USERENTRY ;
DECLARE HAPl .MAPENTRY 1;
DECLARE ISAP.: MAPENTRY 2;
DECLARE MAP5 MAPENTRY 3;
DECLARE INTEGER: T.M;

*A CELL CONSISTS OF TWO INTEGERS, THE FIRST OF WHICH
IS THE INPUT SELECTOR;

DEFINE STATE DLOCK < SELECTINPUT, INTEGER >;
DECLARE STATE: CELL;

*THE TYPE OF THE EXTERNAL CELL STATE IS IMPLICITLY 'CELL';
DECLARE EXTERNAL:EXT;
DEFINENDHD <0/0> <0/l> <1,0> <-l/0> <0/-l>;
DEFINESIZE <!,!> <1/2C> <2C/20> <20,1>;

MOD8: IF CELLS(1,1) NE 0;
*'INPUT' IS IMPLICITLY OF TYPF INTEHER;
••NEWSTATE' IS ALSO IMPLICITLY OP TYPE SAME AS 'CELL';

NEl'STATE(2) = IMPUT;
% ELSE;

T»0; ^A

«, ••NUMriEIGH' - THE NUMBER OF MEIOIIDORS - IS A CLPPAL VA^I/CLt
% OF TYPE 'INTEGER';
% LOOP N-l; 1; 'I nT NUMNEIGH;
% T « T + CELLSCN^);
C- ENDLOOP;
^ NEWSTATE(2) » T-(T/8)*S;
^ END IF; RETURN;

USERR: IF ,,»,, EU USERINPUT(2) AND USERINPUT{3) SEQS "I";
EXT (2)=USERINPUTU);
USEROKAY » TRUE;

ELSE;
USEROKAY ■ FALSE;

ENDIF; EXT(l) »U; RETURN;

MAPI: GRAPHIC * NEWSTATE(l); RETURN;

MAP 2: GRAPHIC » NEWSTATE(2); RETURN;

MAPS: IF NEWSTATE(2) GT 3;
GRAPHIC - I»;

ELSE;
GRAPHIC « 0;

ENDIF;
RETURN;
ENDPROG;

MODS CELL SPACE
FIGURE 3.3

:

. i, . v ass—

69

neighborhood of the space.

Lines MODS to MOD8+8 give the transition function. If there is input

to the cell (line MODS), the input value becomes the cell state (line

M0D8+1). Otherwise (line MOD8+2) the values of all neighbors are summed

(lines M0D8+3 to MODS+6) and the modulo S result becomes the cell state

(MODS+7). If the user is confident that the neighborhood declaration

would always contain five neighbors then lines M0D8+3 to MODS+6 could

readily be replaced by the simpler:

T=CELLS(1,2)+CELLS(2,2)+CELLS(3,2)+CELLS(4,2)+CELLS(5,2);

Lines USERR to USERR+5 give a routine to change the value of the

external cell state under keyboard control.

The remaining lines define map functions to display the SELECTINPUT

field, the INTEGER field or a function of the INTEGER field.

Note that the value of the EXTERNAL variable EXT is undefined at

compile time. The user is advised define it with his "U" command before

any transitions are computed.

•

v

4. THE RUN TIME ENVIRONMENT

The Run Time Environment is the collection of routines and supporting

software that is assumed to be available at the time that a simulation is

taking place, exclusive of what is typically called system software. That

is, the Run Time Environment is the application oriented subsystem, although

details of its form will naturally be influenced by the form of the under-

lying system software.

The particular hardware on which this author worked consisted of two

dissimilar small general purpose computers, one with a graphic display and

the other with a disk storage unit. The two computers are interfaced to

provide interactive processing and sharing of bulk storage and display

facilities. For the purposes of this exposition the fact of two CPU's is

not relevant. While the potential for parallel processing has been exploited

to some extent, this is not crucial to the formulation of the system to be

developed here. Accordingly the description of the Run Time Environment

presented in this Section will not assume more than the conventional

computer configuration shown in Figure 4.1. Further details of the two

computer implementation may be found in Appendix C.

In preparing a simulation for the CSS there are a number of distinct

specifications and programs that must be supplied. These are:

A. Specifications

1. Cell State Data Structure

2. Neighborhood Relationship

70

Bulk Storage

Ö
(Drum or Disk
preferred to Tape)

71

CPU

I

Keyboard-Printer

Display with LightPen

Conventional Computer Configuration
Figure 4.1

■

•

72

3. Size of the Cell Space

4. Initial State of the Cell Space

B. Programs

1. Transition Function

2. Mapping Function (s)

3. User Defined (personal) Commands

4. Input Function (s)

The cell state data structure (A.l) and the general neighborhood

relationship (A.2) are specified as part of the transition function (B.l).

The neighborhood may be redefined at run-time by keyboard commands provided

the number of neighbors remains unchanged. The size of the cell space (A.3)

is specified with the transition function (B.l) or commands that result

in a dynamic assignment of core storage.

The initial state (A.4) of a cell space may be established in one

of two ways:

1) Using the "DECLARE INITIAL:..." statement, or

2) Using the Restore command (discussed shortly) to establish
the current state from a previously save state space.

In cases where it is not sufficient to use the "DECLARE..." statement

to specify the initial state, it will be expedient to prepare a special

transition function whose sole purpose is to assign the desired state to

the space. This state can then be saved by the Keep command (discussed

shortly) for later use.

Preparation of a transition function (B.l) is essentially an "off-line"

< /

73

activity with respect to the simulation proper. A transition function is

written in the language defined herein, then compiled, and loaded. Loading

passes control to the Run Time Environment to accept the remaining

specifications and user commands, and then start the simulation. Mapping

function(s) (B.2) and user commands (B.5) are included with the transition

function. Inputs (B.4) are defined via a keyboard command after the system

is loaded.

The steps required to initiate a simulation will not be discussed

here. These actions are heavily dependent on the operating system and its

job control language. It is useful, for example, to be able to specify

and re-specify transition function routines dynamically. However, where

dynamic storage management and dynamic loading are not available and where

core is too scarce to permit simultaneous loading of several alternative

transition routines (as was the case for this author) certain sometimes

awkward compromises are necessary. These considerations are on the fringes

of the objectives of this thesis. The particular scheme used by the author

is described in Appendix C. It is left to the reader to supply the simple

on-line commands necessary for some of these "nice" features.

Once a simulation has been initiated a number of command facilities

are available to provide the user with control'over the course of the

simulation. Most of the commands may be given either from the keyboard

or via light buttons on a display menu. For various reasons, other of the

commands may be given only from the keyboard or from the display.

•

74

4.1 Keyboard Command Facilities

A nunber of commands are provided at the system keyboard-printer

(a 33KSR) for controlling the action of the simulator. Most commands

are executed immediately as read in from the keyboard. Section 4.1.2

will discuss a simple facility for constructing micro-programs to be

executed by the command interpreter.

A command consists of one, two or three contiguous letters (i.e.,

not separated by space, carriage return or other non-letter) or any other

single character, (except space and carriage return which are ignored.)

Commands may have parameters and the form of these is dependent on the

particular command.

4.1.1 Immediate Commands

The most basic commands, all of which require no parameters, are

tabulated in Figure 4.2. The brief explanation contained there should

adequately explain the function of each, except for Back-up. Further

commands are tabulated in Figure 4.3 and discussed here.

Hie Back-up command restores the state of the simulation to that of

the previous time step. This is possible because of the duplicate

data structure adopted as discussed in Chapter 2. In general, transition

functions are not backwards deterministic (i.e., the state at time t can

not be uniquely determined from the state at time t+1). Accordingly

Back-up may only be performed if there is a valid preceding state data

structure to which to refer. For example one may not Back-up from the
«

initial state or immediately after a Restore operation.

75

Command

N

Mnemonic

Next time step

Back-up

Simulate

Explanation

Compute next time step
and display under current
map.

Back-up to previous time
step and display under
current map. May be done
only once at a given time.

Compute successive time
steps and display under
current map until halted.

H

C

0,1,...,9

Halt

Clear and reset

Redraw

Map Numbers

Debug

Halt simulation.

Clear and reset simulation
to its initial conditions.

Re-compute image for this
time step-presumably after
changing the map.

Select the indicated map
number for subsequent images.

Call in and transfer to
system debugging facilities.

PIC Picture Activate shutter control on
movie camera to take a -
picture of the current cell
space display.

Commands Without Parameters
Figure 4.2

•

76

Command Mnemonic Parameter Explanation

Keep current
space state

File number,
0 or N

Save current state
of cell space in
designated logical
file

Restore File number Restore saved state
of cell space to be
current state.

U User Character
String

Call USER entry point
in transition function
with character string
as parameter. Provides
extension of command
language.

Input Input Stream Define cell inputs.
See text for elaboration.

TTL Title Character
String

Declare title to use
on cell space display.

Commands with Parameters
Figure 4.3

<•

77

The two commands K (Keep) and R (Restore) are concerned with

check-pointing and recovery of a given cell space state. The Keep

command must be followed by an integer parameter, then by one of the

letters "0" or "N". The integer is interpreted as the name of a file

in the logical file system where the state information is to be stored.

The letter designates whether this is to be an old or new file. If old,

the previous contents will be replaced; if new, a new file will be

created and the data written into it. If old is specified and no file

exists, the operation is aborted and an error message given.

Hie Restore command is simply the inverse, i.e., the current cell

state is established from the external file.

The following data is preserved by the Keep operation in order to

check for proper reloading:

1. Title and current time step

2. Number of words per cell

3. External cell state, if any

4. Description of cell space boundaries
(internal data structure)

5. State of the cell space

During the Restore operation items 2 and 4 will be compared with the

corresponding current simulation data, and if the same, the operation

proceeds. If not the same, the user may elect to proceed anyway under the

following assignment rules:

Let A be the cell space currently in core, with a a coordinate variable.

Thus, A(a) is the state of the (single) cell at coordinates a. Similarly

for B and 6 defined in the file.

•

78

1) If ye SA andyeSg, then A(Y) = B(Y).

2) If YE S. and YC S- and E is the external state for S-, then A(Y) ■ E.

3) Otherwise A(Y) ■ "undefined".

The intent is to allow a means, albeit less than ideal, to change

the boundaries of a simulation in "mid-course" and proceed.

The command USER is intended to allow extensions to the command

language to provide operations dependent on the particular model being

simulated. A character string is collected with data constant substrings

being converted to binary form, and the USER entry point of the transition

function is called giving the string as parameter. This string may be

interpreted in any desired manner to provide whatever special functions

are needed. Exit from USER returns a value TRUE or FALSE indicating all

okay or some error. If an error is indicated, it will be reported via the

normal command language error messages.

Data constant substrings are indicated by a leading "■" (equal sign),

followed by a letter indicating the desired type conversion, followed by

the constant itself. The constant is converted according to the indicated

type. For convenience, the "I" may be deleted for integer constants and

the single letters "T" and "F" will serve as the boolean constants TRUE and

FALSE respectively. In any case the USERINPUT array will have the "full"

form as described in 3.2.2.

INPUT is defined from the keyboard via a command 'I' with a parameter

string that defines a sequence of integer values.

The form of the command is:

<I command> •* <integerl> {<repeat group>}|j

<repeat group> •♦ (<integer2> <repeat group>)

■»■ {<integer>}

79

where

<lntegerl> specifies the input selector for this input stream.

R specifies that when the input has "finished", it will
restart at its beginning. This is equivalent to an
additional layer of parentheses with an infinite count.

T specifies that when the input has finished, it will
not restart; it is a one time only input.

A <repeat group> is a string of integer values optionally surrounded

by parentheses with a repetition count <lnteger2> following the left paren-

thesis. Nesting Is permitted.

Using this command quite complex input streams over the set of integers

may be defined. In fact, the set of input streams corresponds to the regular

events over the alphabet consisting of the set of integers.^

4.1.2 Deferred Execution via Micro-Program

A group of commands is concerned with defining and "executing" a

micro-program built up of other commands. There are tabulated in Figure A.4.

The command SAV simply saves in an internal character buffer all following

characters up to and including "if" (pound sign). Even carriage return is

saved so that the length of a micro-program is not restricted to a single input

line. The command GTM will cause control to pass to the micro-program which

the command Interpreter will process until one of several terminating condi-

tions occurs. A micro-program may be invoked more than once.

To verify this requires that the three operations used to describe regular
events (concatenation, union, and star) have equivalents in this command
description. Note that a regular expression describes a set of regular events
whereas an input command describes exactly one Input. Concatenation of symbols
is available as such in defining inputs. The union operation is available
as alternative Input definitions. The set of input definitions which are the
same except for the value of a given repetition count corresponds to the set
given by the star operator, eg. {X* } ■ { (yX)|y Is a non-negative integer).

•

■

80

Command Mnemonic Parameter Explanation

SAV Save micro-program Char string Save micro-program
for deferred execution.
Char. String is
terminated by "#"
character.

GTM Go to micro-program No Transfer control to
micro-program

Start repeat Count Start repeat loop
in micro-program

End repeat No End of repeat loop

Terminate No
micro-program

Terminate micro-program
if sense switch 17
is "on".

Commands for Deferred Execution
Figure 4.4

81

There are three commands that can be used within micro-programs that

can not be used otherwise. The two commands "(" and ")" must occur in

balanced pairs; nesting is allowed to a depth of S. The pair of parentheses

specify a sub-string that is to be repeated a given number of times. This

repetition count must immediately follow the "(" and the remainder of the

string is the repeated part. For example the following input

"X SAV (2 IX 2X (2N)) #GTM"

is equivalent to

"X SAV IX 2X N N IX 2X N N #GTMU

The command "?" will cause a micro-program to terminate if sense

switch 17 of the computer is on.

A micro-program will terminate for any of the following reasons:

1) running off the end (a normal case)

2) executing "?*' with switch 17 up (normal case)

3) executing SAV or GTM (errors)

4.1.3 Commands for "Undefined" transitions

An invocation of the UNDEF operator will cause the following sequence

of events:

1) The current space transition computation is suspended.

2) A message announcing the occurrence and concluding with the
TEXT operand is typed on the console printer.

3) If a micro-program is in process, it is suspended. Control
returns to the keyboard.

4) The Cell Space Display is displayed with a "box" around the
cell at the undefined transition position.

At this point the user has available the full resources of the simulation

system for examining the conditions leading to the situation and correcting

them as appropriate. In this "suspended" status the following commands may

■

82

not be used: Next, Simulate, Back-up and Restore.

There are two conunands available to resume the simulation or return

to normal. "OVR" (over) starts the entire space transition over again.

The box Is removed from the offending cell, and if a micro-program was in

progress, It is resumed. "CAN" (cancel) simply declares that no attempt

will be made to resume, the box is removed and control stays at the keyboard.

After either of these commands, all commands are once again legal. However,

Back-up can not be performed after Cancel since the partially completed

state transition computation destroys the previous time step state.

4.2 The Display Facilities

Control of sequencing of the various kinds of display is provided by

the popular light button and state transition concepts. The initial display

is a command menu allowing selection from a number of possibilities. All

buttons result in the performance of some commands, many of which will entail

display image transitions. Figure 4.5 Illustrates the display transitions,

which will become clearer as we proceed. Figure 4.6 shows the initial command

menu.

A limited amount of user editing is provided via two "control" light

buttons near the lower edge of the screen: "CANCEL" and "C.R.". Light

buttons are queued as they are selected and are processed when the "C.R."

is selected. "C.R." may be considered an end-of-file, or carriage return,

indication. Selecting the CANCEL button will clear the current command

queue. Since in practice at most two or three commands are stacked at a

time, more complex queue display or editing is not provided.

When a button is selected, the display provides positive indication of

the "hit" by blanking all of the screen except the hit button for approximately

83

M
0)

i #
0

0) M

tf
V

4J U 0)

s 0)

(0

~ U)
4J
O u
0) Ü

1-1 0) « iH w 01
M

fH
tH
01 ö

0)
Ps 0
10 «
M a
o. CO
01
•H s

8

4J
c

•H
O

0) o

4J

a

u
U V

S| 01
<U C 3 co

•H S C 4J
CA

4J 4J
O u
0) 01

rH i-l
V 0) w CO

I
fr

fr
s
h

£

W
<d

c
o

S

0)

(0
*J
CO

2
3
60

84

Command Menu
Figure 4.6

85

one-half second. The button is insensitive to the light pen during this

period. This duration was empirically determined to be long enough to

prevent unintended multiple hits of the same button, but not so long as to

interfere with rapid sequential choice of light buttons.

Those commands which may only be given from the display are described

here. They are 1) DISPLAY CELLS, 2) DISPLAY PARAMETERS and 3) MULTI

DEFINE.

4.2.1 DISPLAY CELLS

The basic display form for most monitoring activity is illustrated

in Figure 4.7. The image consists of a) three identifiers shown along

the lower edge, b) the actual cell space state under the current mapping,

and c) a dot approximately at the middle of each of the four edges used to

"move" the cell space state image.

The three identifiers are, in order:

1) The mapping number used to construct the current state display,

2) An arbitrary title defined by the user via a keyboard command,
"TTL",

3) The time step of the simulation in progress.

These identifiers provide a simple and systematic means to document

display results, for example, on film. But they also aid in reminding

the user just where he is in the course of a simulation. In addition to

their information content any of these identifiers serve as an "escape"

light button for invoking the display command menu.

The cell state space is displayed in the major portion of the screen.

Its outline and arrangement are determined by the corresponding commands

described previously. The state of a cell is represented by a symbol or

86

Example Cell Space Display
Figure 4.7

87

graphic, one of 127 that the user can define by coding his desired symbols

for the display character generator.

The availability of only 127 different symbols or graphics may seem

like a strong restriction on the user's ability to monitor the state space.

In practice, however, even in neural network simulations with quite large

cell state spaces (i.e., describable by several integer and/or real variables)

the judicious selection of a small set of mapping functions and heuristist-

ically meaningful graphics can actually enhance the experimenter's insight

concerning the performance of the system.

The DISPLAY CELLS data structure is arranged to enable the image

to be viewed at any of four "scale factors" (xl, x2, x4 and x8) available

on the display hardware. Particularly at the larger scale factors, only

part of the image may fit on the screen. The four edge dots serve as light

buttons causing the cell state image to move "underneath the display window"

in the corresponding direction. The movement is discontinuous and incre-

mental at a rate of approximately 2 cell sizes per second.

4.2.2 MULTI DEFINE

One way in which to make on-line changes to the cell space state is

via the MULTI DEFINE command. This initiates a sequence of display trans-

itions as follows: The display image of Figure 4.8 requests the user to

enter, as an integer, the number of the field of the CELL data structure

to be changed. This is done by selecting the appropriate sequence of light^p»

buttons terminated by the "C.R.".

The next image requests a value for the field in the appropriate

data type. Currently supported are the three data types BOOLEAN, INTEGER

and REAL.

SS

Data Entry Menus
Figure 4.8

89

Data Entry Menus
Figure 4.8 (Concluded)

90

The next image is the cell space display. Light pen hits on a cell

will result in the indicated value replacing the value of the indicated

field of the cell. Successive hits will result in the same assignment to

multiple cells. The mode is terminated by escaping to the command menu.

A variation on this sequence occurs when displaying cells as a direct

result of the DISPLAY CELLS command. Pointing at a cell will initiate the

specify field-specify value sequence with the substitution performed for

one cell only. Pointing to another cell initiates the sequence again.

In both cases, at the time the cell state is updated a new image for

the cell is computed via the current mapping function and substituted in

the display data structure. Thus, if the current map is functionally depen-

dent on the field changed, the user will get positive indication of the

state change.

4.2.3 DISPLAY PARAMETERS

Hitting the DISPLAY PARAMETERS light button causes a transition to

an image such as shown in Figure 4.9. The names of various system variables

of interest to the user along with their current values are displayed.

Those that can be changed by the user are light pen sensitive, while the

others are not sensitive and are somewhat dimmer. A change is initiated

by pointing to the name or its value. A new image requests a new integer

value for the parameter.

"XLLC" and "YLLC" are the X and Y coordinates, respectively, of the

Notice the nice manner in which the ability to manipulate the space state
assignment on a cell by cell basis gives expression to the concept of
embedding developed in Chapter 1.

.9/

Parameters Menu
Figure 4.9

92

lower left corner of the display window. Changing these values is an

alternate way of moving the cell space portion of the DISPLAY CELLS

image. "CURRENT X" and "CURRENT Y" are the coordinates of the most recent

cell pointed to by the light pen or which currently is indicated by

the box. "SCALE" is the hardware scale factor currently in use. Only

values 1, 2. 4 and 8 are permitted for this variable. "IMAGE NAP #" and

"TIME STEP" are for informational purposes only. "EXIT* causes a return

to the main command menu.

5. APPLICATIONS, EVALUATION AND SUMMARY

This chapter illustrates the use of our simulation system in several

application areas, evaluates the completeness and suitability of the system,

and recommends areas for further development.

S.l Applications

5.1.1 An Example from the Literature

To illustrate the use of the simulation system on a realistic problem,

we have chosen an example from the literature which we will discuss in

some detail. The work chosen was reported by Rochester, Holland, Haibt and

Duba [14]. It is chosen because it requires many of the more unusual capa-

bilities of our system, and is not too large to develop in a reasonable

amount of space. The authors describe several simulation experiments per-

formed to investigate and test the concept of Hebb concerning the formation

of cell assemblies of neurons. We shall discuss one of their models called

the FM or frequency model.

For maximum clarity, throughout the balance of this subsection we shall

indicate the authors'specification in italics. The remaining text illustrates

how to accomplish those requirements. The resulting program as a whole is

shown in Figure 5.1.

There are 512 neurons arranged in a cylinder 16 units high and 32

93

—

m

■

94

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARr

MAPENTRY 1;
MAPENTRY 3;

FM NAME;
CfID USERENTRY;
MAPO MAPENTRY 0; DECLARE MAPI
MAP2 MAPENTRY 2; DECLARE MAP3
MAPtj MAPFMTRY U;
INTEGER: X I ^X IDAR^X.I^JRAR.ni .RJ.XP.X^D;
IMTEGER ; N
FUMCTIOM: X.P;
BOOLEANJHEM;

/ ■ ' /

/

^

<15/7> <15/ DEFINFSIZE <-lC,-8> <-16/7>
DEFINEEDfiE Xl/RAf;
DEFINENBIID <0/C>;
DEFINE AFFER ÜLOCK <COORn/RrAL>;
DEFINE STATE ARRAY INTEGER SIZE «♦;
DEFINE CELL DLOCK <AFFrR/AFFER/AFFFR/ArFER/

AFFER,AFFER,SELECT IHPUT/STATE>;
DEFINE EXTERNAL : < <<0,0>,C>,<<0,0>,0>,<<0,C>,0>,

<<0,Ü>,0>,<<0/C>,C>,<<0,G>,0>,0,<ü/3,7,i.ü> >;
PARAMETER
PARAMETER

(ISTATE
(FAT 10 3)

I) (FREQ 1) (FREQDAR
(R,l*) (SELECT 7);

)

FM: IF GEN;
*TIIIS COMPUTES THE

LOOP
CCMNECTIONr- ^/

ELSE;

RANDOM
N-l; 1; N GT G;
NEWSTATE(N,1,1) ■ RANPI(17)-S;
NEWSTATE(N,1,2) » RANDI(17)-C;
NE17STATE(N,2) - 0;

ENDLOOP;
GEN • FALSE;

*TIIE NORMAL
NORMAL:

TRANTITION COMPUTATION;
XI - CELLSd, ISTATE,FRrQ);
XIBAR « CELLSd, ICTATE,FRrorAn);
Rl - CELLSCl,ISTATE,R)*31/32 + (XI - XITAP)

fPS 2;
XPD «"o; X^ « 0;
LOOP 'K; 1; N $0T1Ü 7;

XJ » CELLS(N,irTATE,rpro).
XJPAR = CELLS(N,I STATE,FPronAR);
RJ » 31*CELLS(N,ISTATE,R)/32 +

(XJ - XJPAR) $P? 2;
ST " NEi;STATC(N,2) * SORTl (Rl *P.J);
ST1 « 31*ST/32 + (XI - XIBAR)* (XJ - XJf?AR)
NEWSTATC(N,2) = STl/SORTKRI *RJ);
XP "XP + RJ*XJ;
XPD » XPD + ABS$(RJ*XJ);

ENDLOOP;

FM CELL SPACE
FIGURE 5.1

 i—.

95

XP » 1.25*XP/XPn;
DTI ■ Dl (rlEU5TATF.(ICTATC/^ATlr,)/X,,);
MEWSTATLdSTATC.rATin) « DTI;

*TIIE CHECK FOP. AM INPUT NFUROfJ COMES HERE;
IF NEW5TATE(SELECT) Ea Ü;

MEWSTATEdSTATE.FREQ) » XKXP.DTl);
ELSE;

MEWSTATE(ISTATE.FREQ) - IMPUT;
ENDIF;

NÜRMAL1: NEWSTATE(ISTATE, FREQCAR) - (33*XIBAR + X\)/'J2 ;
ENDIF;
RETURN;

CMD: IF USERItlPUT(3) $EO>$ "G";
GEN ■ TRUE;

ORIF USERINPUT(3) EQ "S";
NN « USERINPUT(6)@MINTEGERn;

ELSE;
RETURN;

ENDIF;
USEROKAY ■ TRUE;
RETURN;

TIIE FIRST MAP CONVERTS '„TinüTS TO INTEGER J, 0 tlZt J %\.t 6«»;
flAPO: GRAPHIC« (NEWSTATE(NM,2)+1.)*32;

RETURN;
flAPl: GRAPHIC = NEUSTATEC I STATE.rREn);

RETUR'!;
MAP2: GRAPHIC «NEl.'STATEC I STATE.FRFnQAR);

RETURN;
MAP3: GRAPHIC = NEl/STATEC I STATE.FATIG);

RETURN;
nkPk: GRAPHIC = NEWSTATE(I STATE,R);

RETURN;

ENDPROG;

FM CELL SPACE
FiouRr 5.1 (cnvcLUPPn)

96

units around.

DEFINESIZE [-16, -8] [-16, 7] [16, 7] [16, -7];

DEFINEEDGE XWRAP;

The neighborhood varies from cell to cell, being randomly generated

at the start of an experiment and fixed thereafter. To accomplish this

requires that the neighborhood be given as part of the data structure

of each cell. Their model provided six inputs (i.e., six neighbors)

for each cell. To this we shall add the cell itself, making a total of

seven neighbors. Further, this neighborhood has a distance bias that

provides that cells within a distance of 8 units may be interconnected;

those more distant may not. To make a cell part of its own neighborhood

represents a general neighborhood. It is accomplished by:

DEFINENBHD [0, 0];

Each input (afferent synapse) is characterized by a synapse weight

that varies between -1 and -fl. It is convenient to associate the neighbor

coordinates and the synapse weight into a substructure as follows:

DEFINE AFFER BLOCK [COORD, REAL];

Each cell then contains six such substructures to give the six neighbors

and their respective synapse weights.

The state of each cell is further characterized by four variables

as follows:

FREQ - FREQUENCY OF NEURON FIRING, 0 & FREQ * 15

FREQBAR - average frequency, 0 $ FREQBAR i IS

FATIG - fatigue, 0 < FATIG < 7

R -a smoothing variable, 0 $ R $ 255.

97

We shall define the STATE of each neuron thus:

DEFINE STATE ARRAY INTEGER SIZE 4;

Certain of the neurons are stimulated externally by an "outside"

driving force. Thus we must declare a SELECTINPUT field.

Combining all of these, the type CELL is defined by:

DEFINE CELL BLOCK {AFFER, AFFER, AFFER, AFFER, AFFER, AFFER,

SELECTINPUT, STATE];

For convenience we define the following names for referring to parts

of the CELL data structure:

PARAMETER (ISTATE 8) (SELECT 7) (FREQ 1);

PARAMETER (FREQBAR 2) (FATIG 3) (R 4);

For external state we choose a neuron with itself for all six

neighbors, all synapses of zero weight, and intermediate STATE:

DECLARE EXTERNAL: [[0,0], 0], [[0,0], 0], [[0,0], 0],

[[0,0], 0], [[0,0], 0], [[0,0], 0], [7, 7, 3, 0];

Since the initial state requires the random generation of a neigh-

borhood pattern for the space, no INITIAL state will be declared.

Rather the following code may be used to compute this information.

LOOP N; 1; N GT 6;

NEWSTATE(N,1,1) = RAND!(17) - 8;

NEWSTATE(N,1,2) = RAND!(17) - 8;

NEWSTATE(N,2) =0.;

ENDL00P;

NEWSTATE(ISTATE) = [7, 7, 3, 0];

The function RAND! (X) is a random number generator with integer parameter

whose value is an integer I, 0 i I < X. line expression in the example

.

98

limits connections to 16 by 16 square centered about a cell. It is only

slightly more difficult to limit connections to a radius of 8 units

about a cell. This code may be thought of as a transition function even

though it is functionally independent of its arguments.

If the cell is to be an input cell, it will have a non-zero

SELECTINPUT field. The following code assigns the cell firing frequency

for the external input:

NEWSTATE(ISTATE, FREQ) = INPUT;

Finally, for a normal cell transition, the main transition function

may be invoked. Since this section of code is lengthy, it is not repeated

here. Refer to lines NORMAL to N0RMAL1 of Figure 5.1. We shall not

develop the coding for the cell behavior in detail since it is a

straight-forward computation. Rather, let us call these three pieces of

code Initt Input, and Normal respectively. TTiey may then be combined as

follows:

DECLARE FM NAME;

FM: IF GEN;

Init

ELSE;

Normal

IF NEWSTATE(SELECT) NE 0;

Input

ENDIF;

ENDIF;

GEN = FALSE;

RETURN;

99

To cause the BOOLEAN variable GEN to be TRUE we will define an input

comnand

"U G"

via the following:

DECLARE CMD USERENTRY;

CMD: IF USERINPUT(3)EQ "G";

GEN = TRUE;

ENDIF;

The general protocol is as follows:

1) Compile and load system,

2) Type "U G" command to set variable GEN,

3) Type N command to cause transition to establish the

initial state.

4) This state may then be kept, if desired, to be used later.

This completes the coding of the simulation proper. There remains

to provide the mapping functions for displaying the state. Four obvious

maps display the four INTEGER variables comprising the STATE:

MAPI: GRAPHIC = NEWSTATE(ISTATE, FREQ);

RETURN;

MAP2: GRAPHIC = NEWSTATE(ISTATE, FREQBAR) ;

RETURN;

MAP3: GRAPHIC = NEWSTATE(ISTATE, FATIG):

RETURN;

MAP4: GRAPHIC = NEWSTATE(ISTATE, R);

RETURN;

To display the synapse weights requires six more maps; these can be

100

collapsed into one map by using a "U" command to select the synapse field:

MAP0: GRAPHIC = 32*(1. ♦ NEWSTATE (NN,2));

RETURN;

Augment the user entry as follows:

GRIP USERINPUT(3) EQ "S";

NN = USERINPUT(6);

USEROKAY = TRUE;

This completes the program. The entire program is shown in

Figure 5.1.

We emphasize that the resulting program should not be construed as

the ideal or unique implementation of the neural model. It is one solution

that can serve as a framework for following-up on the reported work.

Considerable development in many directions is possible depending on the

interests of the investigator. It demonstrates, however, the relative

ease with which cellular models may be accomplished in our system.

5.1.2 Current Work

James Mortimer (Logic of Computers Group) is currently investigating

a class of neurophysiological models that have been implemented on the

simulation system. He has defined a cellular model characterized roughly

as follows:

1) The model consists of 400 cells in a rectangular sheet, each

cell corresponding to a small anatomical region of the cortex.

2) Each cell represents a population of each of five distinct neuron

types lying within each anatomical region.

Because the Run Time Environment preceded the language compiler, Mortimer's
programs are implemented in a mixture of FORTRAN and assembly language.
His implementation is completely compatible with the RTE described here.

101

3) The state of a cell is the frequency of firing of each neuron

type.

4) A uniform neighborhood rule is used with the number of neighbors

counted in the dozens.

5) Input (external electrical stimulation) is provided to each of

the neuron types.

6) A quasi-linear, frequency-modulated model of neuronal behavior

is used to define transition behavior.

Mortimer's goals include, 1) finding a physiologically acceptable

set of model parameters that allows spontaneous, stable activity to

persist in all neuron types, 2) demonstrating that alternating excitatory

and inhibitory inputs induce an alternating pattern of high and low

frequency firing, and 3) investigating the hypothesis that there exist

distinct excitability states in the cortex in which incoming signals are

processed in fundamentally different ways.

Roger Weinberg and Erik Goodman, (Logic of Computers Group) are

modifying a program of Weinberg and Berkus [17] which simulates the

known major chemical processes of a single cell in order to run multiple

cell simulations under the present system. They hope to explore several

adaptive and growth processes, such as competition for environmental

resourses, conditions for normal versus explosive (cancerous) growth

behavior, and conditions for competitive versus cooperative interaction.

5.1.3 Related Problem Areas

We should like to point out two additional problem areas that have

not been important motivators in the development of our simulation system

but in which, none-the-less, our system has potential applications. We

•

102

introduce them here to further demonstrate the broad applicability of

the concepts of cellular models and hence of programming tools embodying

those concepts.

Relaxation methods used for solving partial differential equations

fit well within the framework of this simulation system. Consider the

case of the two-dimensional Laplace partial differential equation:

3x2 3y2

Each cell of the model may represent a small area (of size delta-X

by delta-Y) and the state of each cell represents the value of the function

at the center of the cell. Delta-X and delta-Y thus gives the fineness

of the approximating mesh. The equations are rewritten in terns of finite

differences and the neighborhood is defined to be large enough to include

the cells needed to compute these differences. In this case, the familiar

five cell neighborhood suffices.

Suppose we have the local states as shown below:

Y

Then second order partials are approximated by the second order differences

32f i V2f

3y' vy
• (fa - fi) -

« f3 ♦ f5 - 2fi

(fi - fs)

and

3f2 ^

3x2

V2f

Vx2
(f2 - fl) " (fl - f-)

s f2 ♦ f4 - 2f1

! t

103

The Laplace equation requires that these sum to zero:

(f2 ♦ fn - 2fi) ♦ (£3 * fj - 2^) = 0

or

fl = (f2 ♦ f3 ♦ fu ♦ f5)/4

The transition function then consists of computing the new state of a

cell as the average of its neighbors. Successive time steps are computed

until the space state converges sufficiently to stable values.

The technique generalizes to higher order and non-linear partial

differential equations and in general our simulation system should be

a suitable vehicle for solving such equations whenever relaxation methods

are appropriate. We note that forcing functions (input) and boundary

conditions (external state) are easily accomplished in the system.

Ulam [18] and others have worked with certain problems concerning

the growth of patterns. Starting from a regular arrangement of cells

(such as squares of equilateral triangles) and some initial configuration

of non-blank cells, additions to the current configuration are defined

for successive time steps. Growth rules typically consist of local rules

or conditions for a noft-blank state cell to "extend" to an adjacent cell.

For example, Ulam discusses the following rule for a two-dimensional plane

of squares:

"Our growth is in the plane subdivided into regular squares.

The starting configuration may be an arbitrary set of (closed)

squares. The growth proceeds by generations in discrete intervals

of time. Only the squares of the last generation are "alive" and

able to give rise to new squares. Given the n generation, we

See also work by J.C. ilolladay and R.G. Schrandt.

104

define the (n+1) as follows: A square of the next generation

is formed if

a) it is contiguous to one and only one square of the current

generation, and

b) it touches no other previously occupied square except if the

square should be its "grandparent". In addition:

c) of this set of prospective squares, of the (n+1) generation

satisfying the previous condition, we eliminate all those

that would touch each other. Agian there is an exception

for those squares that have the same parent; these are allowed

to touch."

Hie variations on such growth rules are bountiful, the richness

and apparent complexity of the resulting figures is substantial, and the

difficulty in obtaining analytical results is frustrating. After studying

the growth of figures from temporal and spacial points of view, Ulara asserts

that

"the geometry of objects defined by recursions and iterative

procedures deserves a general study - they produce a variety of sets

different from those defined by explicit algebraic or analytical

expressions or by the usual differential equations."

We point out the intimate relation of these figures to the cellular

model and simulation capabilities developed here, and suggest our system

is a suitable tool for studying these problems!

5.2 Evaluation

The primary consideration in the evaluation of this system is the

extent to which it presents a language and programming environment that

simplifies and shortens the effort required to initiate a simulation.

We know of no conclusive way in which to demonstrate that our system is

optimal in this respect. However, we are confident that we can substantiate

that it is better in this respect than previously available languages

105

and facilities.

It is clear that to do a simulation of a cellular space in some other

general purpose language must require at least as much effort as in the

Cellular Space Language. The computational aspects of state transition

routines can in general be met only by the full resources of an algebraic

language. (Clearly if we restrict our attention to a special class of

cellular simulations, e.g., Von Neumann-like spaces, more special purpose

languages such as simple tabular languages might be a more natural and

compact representation.) But in addition to providing the transition

function, the "cell space properties" must still be provided in other

languages. The needed concepts and data structures for the space and

neighbor specification, for example, simply are not available in existing

languages and must be synthesized afrash for each application. To illu-

strate, in the simulation performed by Planigan approximately forty lines

of Fortran coding are required to define his neighborhood relationship,

while in the author's system this is accomplished by a single declaration.

Moreover, any change in the neighborhood relation is correspondingly easier

to effect.

5.3 Extensions

There are several areas in which the current systems design could

be expanded, either to enlarge the range of cellular models that can be

conveniently accommodated or to increase its general suitability as an

interactive programming system.

The- most important constraint of the present system that ought to

be relaxed is the fixed number of dimensions of cellular spaces. Few,

if any, changes are required to the specification of the Cellular Space

106

Language itself in order to handle higher dimensional spaces. Most

changes would come in the implementation of the Run Time Environment,

but even these are quite simple to introduce. The reason that this gener-

alization has not been included from the beginning lies more in the area

of the heuristic utility of the resulting system than in the difficulty

of implementation. It is not at all clear what kind of display facilities

beyond that already provided would be sufficient to permit the exper-

imenter to adequately cope with the higher dimensionality. The display

problem is distinct from most of the three dimensional graphic research

being performed today since removal of hidden parts or perspective views

are generally not relevant to the simulation problem. We conjecture

that the ability to display the state of arbitrary planes or "lamina"

through such a higher dimensional cell space is the best that can be pro-

video. Such displays do not extend the heuristic support of the system

to any considerable extent.

For certain classes of simulations, the state space of the cell

(or of particular substates of a cell) is sufficiently small that the

mapping functions may be used to define a one-to-one relationship between

that (sub)state and the set of graphics used to display the (sub)state.

For such cases it would be particularly useful if the experimenter could

use a menu consisting of the set of possible graphics to assign state values

as well as display them. Indeed, even in problems with a many-to-one

mapping, the graphics may be sufficiently characteristic of the state

that it would be adequate, for the purposes of the simulation, to use

the graphics to assign a particular state (from among those which map

into that graphic). A possible implementation would provide for the

1U/

specification of "inverse maps", which would be used quite similarly to

maps, except that their domain would be the set of graphics and their

range the cell state space.

Thomas Schunior (Logic of Computers Group) has suggested an idea

for making more efficient use of core storage in many simulations. He

would partition the state of each cell into a private part and a public

part. The private part of a cell state space is that sub-state space

which does not functionally take part in the state transition of any other

cells. The public part consists of the remainder of the state space.

The private state information need not be stored in the redundant form

adopted earlier since it clearly will not be accessed after being changed.

For the same reason, this data could even be kept on a bulk storage device

and streamed in and out of core in synchronism with the algorithm for scan-

ning the cell space during a transition. The obvious advantage is that

the size of simulation that can be represented with a given amount of core

storage is increased. Moreover, experience with the computational require-

ments of typical simulations indicates that good advantage could be taken

of bulk storage in this manner without introducing input/output delays

due to accessing the bulk storage.

A more subtle issue is raised by the following consideration. In

certain biologically oriented models, it is quite natural to think of a

cell as causing a change of state in some neighboring cell. Formally,

this is easily accomplished in our cellular model; though it may entail

enlarging the neighborhood of each cell so that the transition function

might "look to see" if some neighbor would be causing a change. But the

■

108

point of view is somewhat awkward. We suggest a notion of output neighbor-

hood which gives the range of influence of a cell. Our previous notion

of neighborhood might then be better called the input neighborhood or the

domain of dependency of the cell. The obvious formal problem is that

any given cell may be in the output neighborhood of several cells which

are attempting to cause mutually exclusive changes. (Holland faced a simi-

lar problem in defining the path building rules for his ICC's.) But

where resolution procedures can be introduced, or where it can be shown

that inconsistent behavior can not be generated, such an expanded model

may be a better framework for study, in the sense that it more closely

mirrors the way certain systems are conceptualized.

We recognize that the subscript notation for referring to the neighbors

of a cell is hardly the most intuitive manner of doing so. Whenever

possible, one would like to employ mnemonics, such as"RTCELL" for the

cell to the right. It is clear, however, that because of the freedom in

defining the neighborhood relationship and because the neighborhood can

even change dynamically, no naming convention can possibly be both suitable

to implement and heuristically useful to most people. The best solution

to this dilemma is probably the inclusion of a generalized parameter

facility in the Cell Space Language. Such a facility would permit a user

to define, for example, "TOPCELL" to mean "CELLS(3)" in order to refer to

a particular neighbor more conveniently, and then to be able to write

an expression such as "TOPCELL(1,NN)" to refer to substates of the cell.

Such a facility is useful in almost any language, not just a language

for cellular simulations. Accordingly, we have not included a parameter

109

facility within our language.

A potentially valuable extension not included for similar reasons

is the provision of a run-time symbol table. This, together with an

appropriate run-time interpreter or "debugger", would be a valuable tool

in the testing of new models.

We speculate that a valuable adjunct to any interactive system that

purports to enhance the heuristic capabilities of its users is a facility

for maintaining an automatic history of all actions taken by the users

over some prescribed period of time. This would permit them to better

keep track of activities during a complex exploration, and even permit

the reconstruction at a later time of the exact circumstances of a space

behavior whose significance may not have been realized when it occurred.

Whether the utility is worth the cost of implementation we leave for

others to explore.

5.4 Summary

Regular networks of similar interacting components constitute an

important class of models in many disciplines, from automata theory to

parallel computer systems to biological systems. A number of significant

applications of such models have been surveyed and drawing upon that and

related material, a programming system has been proposed for conveniently

simulating such models. Careful attention has been given to setting

forth the motivations behind the final proposed form. Lastly, several

applications developed on the system have been discussed in order to

integrate the development and demonstrate the utility of the system.

The final measure of the success of this effort must rest with

no

those who will now attempt to approach the system as a tool for doing

their simulations. TWo such efforts are well underway. To these and

others go the task of further validating and extending the premise of this

thesis: that an integrated and viable programming system can be created

for simulating a broad range of cellular spaces.

i

i

REFERENCES

1. Burks, Arthur W., Von Neumann's Self-Reproducing Automata, Technical
Report 08226-11-T, Computer and Communication Sciences Dept.,
University of Michigan, June 1969.

2. Codd, Edgar F., Propagation, Computation and Construction in
Two-Dimensional Cellular Spaces, Ph.D. Dissertation, University
of Michigan, 1965, also as Cellular Automata, Academic Press,
1968.

3. Comfort, W. T., "A Modified Holland Machine," in Proceedings-Fall
Joint Computer Conference, 1963.

4. Crichton,J. W., and Holland, J. H., "A New Method of Simulating
the Central Nervous System Using an Automatic Computer," Technical
Memorandum 2144-1195-M, The University of Michigan, March 1959.

5. Evans, George W., II, Graham F. Wallace, Georgia L. Sutherland,
Simulation Using Digital Computers, Prentice Hall, 1967.

6. Flanigan, Larry Karl, A Cellular Model of Electrical Conduction in
the Mammalian Atrioventricular Node, Ph.D. Dissertation, University
of Michigan, 1965.

7. Finley, Marion, Jr., An Experimental Study of the Formation of Hebbian
Cell-Assemblies by Means of a Neural Network Simulation, Ph.D.
Dissertation, University of Michigan, 1967.

8. Hebb, D. 0., Organization of Behavior, John Wiley § Sons, New York,
1949.

9. Holland, J. H., "A Universal Computer Capable of Executing an Arbitrary
Number of Sub-Programs Simultaneously," pp. 108-113 of the
Proceedings of the 1959 Eastern Joint Computer Conference,
Institute of Radio Engineers, 1959. Also in Essays on Cellular
Automata.

10. , "Iterative Circuit Computers: Characterization and Resume of
Advantages and Disadvantages," pp. 171-178 of Microelectronics
and Large Systems. Edited by Mathis, Wiley, and Spandorfer.
New York: Spartan Books, 1965. Also in Essays on Cellular
Automata.

11. , "Universal Spaces: A Basis for Studies of Adaptation,"
pp. 218-230 of Automata Theory. Edited by E. R. Caianieilo.
New York: Academic Press, 1965.

12. Michigan Algorithm Decoder (MAD) Manual, University of Michigan
Press, Ann Arbor, Michigan, August 1966.

Ill

112

13. Parnas, David L., "On Simulating Networks of Parallel Processes
in Which Simultaneous Events May Occur," Comm. A.CM. 12, 9
(September 1969) pp. 519-531.

14. Rochester, N.; J.H. Holland; L.H. Haibt; W.L. Duda., "Tests on a
Cell Assemble Theory of the Action of the Brain, Using a Large
Digital Computer," in Transactions on Information Theory,
IRE, IT-2, No. 2.

15. Von Neumann, John, Theory of Self-Reproducing Automata. Edited §
Completed by Arthur W. Burks, University of Illinois, Urbana,
Illinois, 1966.

16. W „ner, Eric G., "On Connecting Modules Together Uniformly to Form
a Modular Computer." in 1965 IEEE Conference Record on Switching
Circuit Theory and Logical Design. October 1965.

17. Weinberg, Roger and Berkus, Michael, Computer Simulation of a Living
Cell, Technical Report 01252-2-T, Computer and Communication
Sciences Department, University of Michigan, May 1969.

18. Ulam, Stanislaw, "On Some Mathematical Problems Connected with
Patterns of Growth of Figures" in Mathematical Problems in the
Biological Sciences, pp. 215-224. Proceedings of Symposir in
Applied Mathematics, Vol. 14, Providence, Rhode Island: American
Mathematical Society, 1962.

19. Yamada, H., and S. Amoroso, "Tessellation Automata," (Unpublished)
April 1968.

APPENDICES

113

TABLE OF CONTENTS

APPENDIX A. Summary of the Language

Page

116

APPENDIX B. Compiler Implementation 125

B.l Pass 1 - Source Reduction 125
B.l.l Lexical Scan 125
B.1.2 Expression Parser 127
B.1.3 Statement Processor 131
B.1.4 Intermediate Program Representation 131

B.2 Pass 2 - Object Code Generation 132

B.3 Pass 3 - Assembly 133

APPENDIX C. Run-Time Environment Implementation

C.l Hardware Configuration

C.2 1800 Organization
C.2.1 Cell Space Data Structure

and Management Routines
C.2.2 Simulator Organization
C.2.3 Structure of Transition Routines

C.3 POP-7 Software

C.4 Communication Protocols

135

135

137

138
140
147

153

155

114

LIST OF FIGURES

Page

A.1 Declarations of the Language 117

A.2 Executable Statements of the Language 118

A.3 Assignment Statement 119

A.4 Augmented Operator Grammar For Assignments and Expressions 120

A.5 Reserved Atoms - Keywords 121

A.6 Binary Operators 122

A.7 Unary Operators 123

A.8 Precedence Values For the Binary Operators 124

B.l Lexical Types of the Language 126

C.l Logic of Computers Hardware Configuration 136

C.2 Example of Cell Space Data Structure 139

C.3 Flow Chart of Cell Accessing Routine 141

C.4 Flow Chart of Standard External Cell Procedures 142

C.5 Flow Chart of Main Simulation Routine: CELSP 143

C.6 Major 1800 Routines and Functions 144

C.7 Flow Chart of Transition Computing Routine 145

C.8 Transition Routine Control Block 148

C.9 1800/PDP-7 Interactive Protocols 156

:

115

APPENDIX A. SUMMARY OF THE LANGUAGE

This section is a collection of figures summarizing the major features

of the simulation language. In addition to presenting a descriptive syntax

for the language, several figures detail the operators and associated data

types that are defined in the current implementation. In these latter

figures the following abbreviations are used:

B

I

Ic

R

Tl

BOOLEAN variable or constant

INTEGER variable or constant

INTEGER constant only

REAL variable or constant

TEXT variable or constant of exactly one character

Strictly speaking the atoms = and ! are not operators in the formalism

used here. However, it is useful to think of = as an operator that accepts

any two arguments of the same type. In addition, the appropriate conversion

will be performed when assigning as INTEGER value to a REAL variable, or a

REAL value to an INTEGER variable.

116

Hi

117

«ieclare part> ■* DEFINE A ARRAY <type> SIZE <integer>;

■* DEFINE X BLOCK (<type-list>];

•*■ DEFINE A UNARY <type>, <type>;

•*■ DEFINE A BINARY <integer>, <type>, <type>,<type>;

+ ENDOPR;

•*■ DEFINENBHD {<coordinate>};

+ DEFINESIZE {<coordinate>}"aX;

+ DEFINEEDGE
XWRAP
YWRAP
TORUS

A

DECLARE A NAME;

DECLARE A MAPENTRY <integer>;

DECLARE A USERENTRY;

DECLARE A PRETRANSENTRY;

DECLARE A POSTTRANSENTRY;

DECLARE <type>: <A-list>;

PARAMETER { (A {,}£ <integer constant>) };

Declarations of the Language

Figure A.1

118

<executable> ■♦IF <exp>;

■•> ORIF <exp>;

♦ ELSE;

-► ENDIF;

♦ LOOP <assignments <exp>; <exp>;

♦ ENDLOOP;

♦ <assignment>;

♦ CONTINUE;

•*■ EXECUTE <exp>;

♦ GOTO <exp>;

-»• RETURN;

♦ ENDPROG;

Executable Statements of the Language
Figure A.2

li»

<assignment> ♦ <left des> ■ <oxp>

<left des^ ♦ X

-* \ (<exp llst>)

<exp list> ♦ <exp>

♦ <exp list>, <exp>

<exp> * <exp> 6 <exp>

■*■ * <des>

♦ <des>

<des> ♦ <left dcs>

♦ (<exp>)

♦ AI (<exp list>)

- Ai1

♦ <Isv>

<des> ♦ ^assignment >)

<lsv> ■♦ I<exp list>]

Syntax of Assignment Statement
Figure A.3

120

GRAMMAR .

<STMr> • . <BEG*> <ASSIGNMENTS
<STMr> . <BEG*> <EXP>
<ASSlGNMIiNT> i <LEFT DES--*> <EXP>
<LEFT DES—*> • • <LEFT DES> ■

<LEFT DES> • <LAMBDA*>
<LEFT DES> • ■ <LAMBDA-(*> <EXP LIST>)
<LAMBDA-(*> • <LAMBDA*> (
<LAMBDA*> • LAMBDA '

<EXP LIST> ■ <EXP>
<EXP LIST> • <EXP LIST-.*> <EXP>
<EXP LIST--*> ■ <EXP LIST>
<EXP> • <EXP-THETA*> <EXP>
<EXP> • . <DES>
<EXP-,mElA*> • <EXP> THE FA
<DES> • <PHI*> <DES>
<PHI*> • PHI
<DES> ■ <LEFT DES>
<DES> . <(*> <EXP>)
<DES> • <LAMBDA-I-(*> <EXP LIST>)
<DES> . <(*> <ASSIGNMENT>)
<DES> . <LSV>
<LAMBDA-!-(*> ■ <LAMBDA-1*> (
<LAMBDA-!*> ■ <LAMBDA> 1
<(*> • (
<LSV> • <LSB*> <EXP LIST> R
<LSB*> . LSB
'•DES> . < LAMBDA-!*>

RSB

Note: THETA

PHI

LSB

RSB

binary operator

unary operator

left structure bracket, [

right structure bracket,]

Augmented Operator Grammar for Statements and Expressions
Figure A.4

121

Prccudural* Cell Space Related

INTEGER

REAL

BOOLEAN

LABEL

FUNCTION

TEXT

DECLARE

DEFINE

ARRAY

SIZE

BLOCK

UNARY

BINARY

ENDOPR

ENDPROG

IF

ORIF

ELSE

ENDIF

LOOP

ENDLOOP

GOTO

CONTINUE

EXECUTE

RETURN

CELLS

COORD

CELL

INITIAL

EXTERNAL

INPUT

SELECTINPUT

DEFINENBHD

DEFINESIZE

DEFINEEDGE

XWRAP

YWRAP

TORUS

LOCATE

NAME

USERINPUT

USEROKAY

(* The operators of Figures A.6 and A.7 are also reserved atoms.)

Reserved Atoms - Keywords

Figure A.S

3. AND $0R$

.

122

Operators

1. ♦ - * /
P

2. EQ NE GT
GE LT LE

Type of Argumc nts Type of Result

I
I
R
R

I
R
I
R

I
R
R
R

I
I
R
R

I
R
I
R

1
B
B
B

4. $BITAND$ $BIT0R$
$BITXOR$

5. RS LS
(right and left
shift)

6. EQ

I I
Tl I
I Tl

I Ic
Tl Ic

I Tl
Tl I
Tl Tl

I
Tl
Tl

I
Tl

B
B
B

Binary Operators
Figure A.6

123

Operators

1. - ABS$

Type of Argument

I
R

Type of Result

I
R

2. N0T$

3. BITNOT$

4. FIX$

5. FLOAT$

Unary Operators
Figure A.7

124

RS LS $B1TANÜ$ 70
|BIT0R$ $BITXOR$

P 60

50

40

EQ NE GT 30
GE $LT| LE

AND 20

OR 10

Precedence Values For the Binary Operators
Figure A.8

APPENDIX B. COMPILER IMPLEMENTATION

The compiler is relatively conventional in organization. It consists

of a lexical processor for extracting atoms from the input stream, followed

by a syntax driven analyzer which produces an intermediate text form commonly

called triples. A second pass processes the triples and as its output produces

source code in 1800 assembler format. This source must then be assembled

via the 1800 monitor system.

B.l Pass 1 - Source Code Reduction

B.l.l Lexical Scan -°

Each atom is assigned a lexical type based on the lexicographic

characteristics of the atom. The set of lexical types constitutes the

terminal vocabulary of the syntactic parser. The complete set of lexical

types and their defining characteristics is presented in Figure B.l.

The lexical parser is basically a finite state acceptor that reads

individual characters from the input until a terminating state is reached.

Depending on the final state, the terminating character may be included

in the atom being assembled, or saved to start the succeeding atom. Each

character is assigned a class code (running from 0 to 6); this code actually

drives the finite state acceptor. To make this organization feasible we

have minimized the multiple use of characters, e.g., period ".", in different

contexts while attempting to avoid an overly artificial lexical appearance.

Characters are classified as follows:

125

.

126

Binary Operators 6 ♦ - • /

and X-atoms defined as

binary operators, e.g., EQ

Unary Operators

and X-atoms defined as

unary operators, e.g., ABS$

Punctuation - with each

character a distinct

catagory in Itself [1 () , 1 - : ;

Keywords Each predefined, e.g., IF, LOOP,

DECLARE, REAL

All others X-atoms

Lexical Types of the Language

Figure B.l

127

Illegal Characters

Numerics

Alphabetics

Space and Newline

Quote

Punctuation

Other Legal Characters

After each atom is collected, its lexical type i» determined from

its symbol table entry if the atom is predefined or has occurred before;

otherwise the lexical type is X. The output of the lexical scan is a

sequence of pointers to the symbol table entries for the atoms of an input

line. Entries are created as needed for new atoms.

8,1.2 Syntactic Parsing

Of the many possibilities for syntactic recognition of expressions,

we choose to modify a technique developed by Cries [4] employing Augmented

Operator Grammars. Cries' technique has the following advantages over

most other syntax recognizers:

1) It has the speed advantages of left-to-right without back-up,

bottom-top techniques used with the operator and precedence grammars.

2) The recognition algorithm gives the symbol to which to reduce a

"handle", as well as detecting the handle proper.

3) The organization of the recognizer permits extra-syntactic activities,

such as triple generation, to occur at many points in handle reduction.

(This is important in the handling of LSVs in our compiler. For example,

a triple is generated by the atom "<" which marks the start of an LSV.)

Our modification of the AOG technique concerns the handling of binary

operators. In the operator grammars, the precedence of binary operators

is indicated in the grammar itself. Consider the "typical" grammar

128

<term> ♦ X

♦ <terin> * X

<exp> ♦ <tenn>

♦ <exp> ♦ <term>

where X is a terminal class consisting of variable names in the language.

The higher precedence of multiplication (*) over addition (+) is explicitly

part of the syntax. This results in a syntactic description that becomes

longer as each new operator is introduced Moreover, a new parser must

be logically generated each time a new operator is introduced, since it

involves a change in the syntax. Floyd [3], for example, would have to

calculate new f and g functions. In practice this is often not too difficult

to do because the high degree of regularity among the grammar rules is re-

flected in the recognizer. The fact remains, however, that the augmentation

must be explicitly accommodated by the parser.

In the modified form employed by this author, the following (simplified)

syntactic description is used:

<exp> ■*■ X
♦ <exp> 6 <exp>

where 6 represents the class of binary operators, e.g., * * /. Thus 6 is

a terminal class of the grammar.

It is clear that such a grammar is, of itself, ambiguous; the precedence

information is lacking. This information is essential to be able to parse

the following:

<exp>. 6. <exp>_ 9- <exp>.

Let f be a function from the class of binary operators 6 to the natural

numbers, f: 9 -»■ N. Parse the sentential form by associating first on the

.

129

left if fCep > f{e2). This yields:

<exp >.

<exp>1 <exp>. j ^^2

If fCe.) < f(62), then associate first to the right. This yields:

ei

<exp>1

<exp>- <exp5
/\

The function f: 6 ->■ N corresponds exactly to the usual notion of

arithmetic precedence for the binary operators. Moreover, defining a new

binary operator consists of declaring some atom a to be an element of the

class 6 and associating with it the value f(a).

Another departure from conventional parsing techniques occurs in the

handling of literal structured variables. In order to provide additional

information to the routines that will expand triples, we take advantage of

the fact that extra-syntactic actions can occur each time an initial segment

of a production is reduced. This enables us to provide more efficient run

130

time code than can be done with the result of an operator analysis.

In order to facilitate the manipulation of cell states by the space

state data management routines, we must maintain the data structure of each

cell as a contiguous block of memory. In addition, data structures which

allow "pointers" impose an overhead in memory requirements that is unjust-

ifiable since all cells of the space must have the same data structure.

The requirement of a contiguous, non-pointer data structure means that

if LSVs are parsed and interpreted in the usual manner, then an excessive

and unnecessary amount of physical data movement will result. Consider the

following:

DEFINE INT3 BLOCK [INTEGER, INTEGER, INTEGER];
DECLARE INTEGER: A, B, C, D;
DEFINE QRST BLOCK [REAL, INT3];

The expression

[1., [A+B, C, D]]

might be parsed as follows:

The usual inside-out method of generating code results in the following

sequence of operations:

1) Select a temporary location, compute A+B and save it there.

2) Select a temporary storage area for the inner block and move A+B,
C and D into place.

131

3) Select a temporary storage area for the outer block, and move 1.
and [A+B,C,0] into place.

Clearly much of this data movement is unnecessary if, at the bottom

of the parsing tree, one can know where the data will eventually be needed

at the higher level(s). With such information, the following shorter sequence

of operations could result:

1) Select a temporary for the outer block.

2) Compute A+B and save into place.

3) Move 1., C, ani D into place.

The necessary information can be extracted and saved in the triple storage

in the course of parsing LSV structures. The details of this process will

be the subject of further work.

B.1.3 Statement Processor

Generally a statement is made up of a keyword followed by an expression.

Recognition of the keyword causes a dispatch to the appropriate routine for

handling that language construct. These routines may themselves directly

output triples and may also call on the expressior parser to "parse out"

an expression and output triples. Detection of global errors, such as

unbalanced LOOP... ENDLOOP and IF...ENDIF pairings, are performed by these

routines.

B.1.4 Intermediate Program Representation

The result of pass one processing is represented by three kinds of

tables: the triple table, the symbol table, and the structure table.

132

The triple table represents the executable portion of the program. The

symbol table contains entries for all atoms used in the program, together

with their properties or attributes. The structure table represents the

data structures defined by the piogram, either explicitly or implicitly.

B.2 Pass 2 - Object Code Generation

The second pass over the source program - now in its intermediate

form - produces as its output the machine language program to be executed.

This "object" program is represented as 1800 Assembler source coding to be

subsequently assembled.

The symbol table is first examined for the information needed to build

the transition routine control block. This control block is the primary

linkage between the compiler and the Run Time Environment. Its structure

and interpretation is discussed C.2.3.

Next is the processing of the triple table. Each triple is viewed as

a macro call which directs the action of a simple macro expander. Macro

definitions are of two types: symbolically defined and built-in.

The symbolically defined macros are written in a simple macro

language. The definition set is read in and stored for interpretation at

the beginning of pass 2. Local object code optimization [1,2] is accomplished

as part of these macros through conditional transfers and predefined attribute

tests, e.g., "Is the needed result in the accumulator?" "Is the argument

a constant?" Nested, but not recursive, calling of macros is provided.

"Built-in macros" are subroutines which handle some of the more complex

133

tasks, such as processing LSVs, and perform some intermediate level code

optimization e.g., allocation of index registers, and subscript optimi-

zation. The output of these routines are macro calls to symbolically

defined macros.

The final step is allocation of storage for program variables and

constants, LSVs, and the temporary work area.

B.3 Pass 3 - Assembly

The assembly source language is accumulated in a work area on disk.

When complete, control is passed to a modified version of the 1800 assembler

which accepts its input from this work area. Normal assembler control cards

may be included in the input deck to govern the listing of the program

and symbol table, to save the object code, etc.

BIBLIOGRAPHY FOR APPENDIX B

I. Arden, Bruce W.; Caller, Bernard A.; Graham, Robert M. "The MAD
Definition Facility", Comm. ACM (Aug. 1969) 12, 8, pp. 432-439.

2. Cheatham, T.E., and K. Sattley, "Syntax Directed Compiling",
pp. 264-297, in Rosen, Saul, Programming Systems S Languages,
McGraw-Hill, 1967. ~Jt

3. Floyd, Robert W., "Syntactic Analysis and Operator Precedence",
J. ACM 10, 7 (July 1963) pp. 316-333.

4. Cries, David, "Use of Transition Matrices in Compiling", Comm.
ACM 11, 1 (Jan 1969) pp. 26-34

5. International Business Machines Corp. IBM 1800 Assembler Language
IBM Publication C26-5882.

6. . IBM 1800 Functional Characteristics IBM Publication A26-5918.

7* • IBM 1800 Time-Sharing Executive System Concepts ard Techniques
IBMTübTIcation C26-3703.

134

APPENDIX C. RUN TIME ENVIRONMENT IMPLEMENTATION

The Run Time Environment provides facilities for maintaining the cell

space data base, invoking the transition routine, receiving and interpreting

user commands, and maintaining the displayed description of the cell space

state.

The simulation system is distributed along functional lines between

the two computers with the PDP-7 handling user interaction and maintaining

the display, and the 1800, with its larger memory and bulk storage, handling

the basic computational load. Because two different kinds of CPU's are in-

volved, no attempt at load sharing is possible except by explicit choice of

the programmer.

The implementation will be described first in terms of the available

hardware. Then the organization of the software on the respective machines

will be discussed, and finally the intermachine protoc Is will be detailed.

C.1 Hardware Configuration

The hardware configuration on which the simulation system is implemented

is unusual. See Figure C.l. The hardware consists of two computers, (1)

an IBM 1800 with disk and (2) a DEC PDP-7 with CRT display. The display is

the DEC 338 display modified by substituting a PDP-7 for the PDP-8 computer

of the 338. This specially built ,,337,, is the prototype for DEC's 339 dis-

play system.

The two computers are connected by two interfaces. All of the current

work has been performed using the slower word-by-word direct program con-

135

136

I
I
I

i

i
5
O

•6
e "o 3 c ft. o D
V 0)

.« "S h
(4

U
V

to

0)

cd na
« c

B: O
u

4> V
a. M

^ x

I

?? Vorx

c oo
6 to
a. to

4-> T3 .c 0)
i ■ H

•r- <W

£

§
•H
+J e
So—t

«4-1 u e o v u ^
u So

+J u.
3 I
5

'

137

trolled interface because the high-speed interface was not completed.

This interface gives a data rate of approximately 300 words (16 bits/word)

per second. While acceptable for small simulations, this rate is definitely

an annoying factor for larger simulations.

The high-speed interface was designed by this author and John L. Foy, Jr.

with the requirements of this computer configuration specifically in mind.

This interface features a master-master control organization and unusually

flexible formatting of data movement. The interface may be fully controlled

by either computer separately or by both cooperatively. Data movement is

via a variable length circular shift register providing selectable frame

sizes (effective word size). When completed and integrated into this simu-

lation system, the flexibility and high-speed of the interface will help

to obviate many of the problems of working with this two computer complex.

C.2 1800 Organization

The 1800 may be considered the "real" simulation machine and is the

logical controller of the total computer system. The data base and all

user provided routines reside on the 1800. It communicates with the PDP-7

to generate the cellular displays and to accept and act on the operator's

commands.

Program listings are not included in this report because 1) they are

lengthy, 2) the system is written in assembly language, and 3) the hardware

configuration is unique. Rather we have attempted through flowcharts and

discussion to make the organization of the system clear enough that others

could adapt it if they so desired.

I

I 138

C.2.1 Cell Space Data Structure and Management Routines

The data structure chosen to represent the cell space consists of

an ordered set of variable length blocks. Each block represents a row

of cells parallel to the X axis. Access to each block is made via three

vectors giving the minimum X coordinate of the block, the maximum X

coordinate, and the base of the block in memory, respectively. This organ-

ization is sometimes called the address table technique. (This "base" is

really a displacement from a storage area beginning since two identical

data structures must be manipulated.)

The algorithm for computing the base of a cell given its X and Y

coordinates is as follows:

Let C(X,Y) be the displacement of the cell at coordinates
X and Y, and NWPC be the number of words per cell required to
represent the state of a single cell in memory; then:

1. If Y > YMAX or Y < YMIN then C(X,Y) is undefined;
else go to 2,

m

2. If X > XMAX(Y) or X < XMINCY) then CCX.Y) is unde-
fined; else go to 3.

3. I - Y-YMIN + 1
C(X,Y) = (BASE (I) + X - XMIN(I) + 1) * NWPC

To illustrate, the cellular space with boundary

DEFINEBDRY [-2,-2] [-2,0] [0,2] [2,2] [2,0] [0,2];

may be drawn as shown in Figure C.2. The three arrays, XMIN, XMAX, and

BASE for this space are also shown in Figure C.2. The "center" cell with

coordinates [X,Y] = [0,0] may be accessed at location C(0,0) = BASE(0-(-2)+l)

+ 0 - XMIN(0 - (-2) + 1) + 1 = BASE(3) + 0 - XMIN(3)+1 = 7 + 0 - (-2+1 = 10

relative to the base of the space data structure.

•

139

DEFINESIZE [-2,2] [-2,0] [0,2] [2,2] [2,0] [0,2]

\ \ \ \v \ «.
\

-v-v->
In the data area of the data structure appears sequentially
the rows of the cellular space, beginning with YMIN and XMIN:

C(-2,-2), C(-l,-2), C(0,-2),

C(-2,-l), C(-l,-l). C(0,-1), C(l,-1).

C(-2,0),...

C(0,2), C(l,2), C(2,2)

In the address table appears dimension information and the
location of the beginning of each row in the data area:

YMIN: 2
YMAX: 2

BASE(I) XMIN(I) XMAX(I)

1
2
3
4
5

0
3
7

12
16

Example of Cell Space Data Structure
Figure C.2

140

Figure C.3 presents the logic of the cell accessing routine, GETST.

Note that the default handling of external conditions is trivially handled

by a "dummy" external cell procedure that simply returns on being called.

The standard external cell procedure routines are now easily presented

in terms of the cell space data structure. The flowcharts are shown in

Figure C.4.

All references to the cell space data base are made via the two routines

GETST for accessing cells, and PUTST for assigning a value to cells. These

routines work from five global parameters: X and Y, coordinates of the

relevant cell; OLDGT and OLDPT, base addresses of the arrays to access for

GETST and PUTST respectively (these are different during a transition, but

will have the same value when changing a state via light pen commands); an

index register where the base of the appropriate cell is produced as the

value of these routines.

C.2.2 Simulator Organization

The main routine of the simulation system, CELSP, consists primarily

of a simple command dispatcher for directing commands from the POP-7 to the

appropriate routine. The main routine also performs initialization when

the system is first loaded. See Figure C.5. Except for computing the

state transition, we simply list the major routines and briefly indicate

their functions in Figure C.6.

The organization of the transition computing routine is shown in

Figure C.7. That flowchart together with the discussion in Section C.2.3

describes this rather complex operation.

N-

141

i /

{EntTyJ GETST

Compute
Displacement

Is displacement
Undefined?

Yes No

XP
YP

X
Y &

Call External
Cell Procedure

I
Is XP EQX
and YP EQY?

No Yes

1
Is there an External

Cell State?

Yes

Supply "pointer11

to External State

Flow Chart of Cell Accessing Routine

Figure C.3

•

142

(jntry) YWRAP

T
Set Y - YMIN ♦

y modulo (YMAX-YMIN*!)

(Entry j

\ Is YMIN<YiYMAX? |

No

1

&

|

Yes

)

Set X » XMIN(Y)
♦ X modulo(XMAX(Y)-

XMIN(Y) +1)

(Exit)

Flow Charts for Standard External Cell Procedures

Figure C.4

143

CELSP:

No

/

QEntr^

Perform
\ Initialization

T.
Delay an amount
Proportional to
value in data switches

I
Poll PDP-7 for a
Command. Is there one?

Yes

Is TBIT
"on"?

No

Look up in table
/ and call appropriate

■' routine.

Yes ill
Perform Transition
and update display
image

Report success or
failure to PDP-7
via command 7

Simulate:

Halt:

Entry TBIT - "on

.Entry
TBIT

on ■ —>

"off" -i-^
Indicate,
Success

Exit

Flow Chart of Main Simulation Routine: CELSP

Figure C.5

144

Routine Name Summary of Function

PARAM, ATDIM, SPEC7

KEEP. REGO

USERS

INPUT

QR

QR, QFA

MULTI

DEFAL

Read and set up user control data in the
simulator control area, fill in default
conditions where needed; Compute the ad-
dress table based on boundary fpedifica-
tion and allocate core as needed; Define
configuration to PDF-7 (Command 6).

Save and Restore the current state space
on an external file.

Collect parameter string from PDP-7,
assemble in USERINPUT area, then call the
USER entry.

Accept input from PDP-7 and set up control
tables for the input stream being defined.

A service routine for PDP-7--converts
character string to floating point binary
form and returns value.

Look at the "field table" of the cell
data structure and return the displacement
and data type of the ith field. QF also
reports these to the PDP-7.

Accepts X, Y coordinates, field number, and
data value from PDP-7 and substitutes into
current space state. Return image of the
modified cell as computed by the current
mapping function.

A collection of default routines which are
selectively used if the user does not de-
clare a feature in his program.

Major 1800 Routines and Functions

Figure C.6

145

\EntTy)

Point •PUTST' at
"new" state area

< Call Pre-Transition Routine >

Iterate over all cells
of the space. Let X,Y
be coordinates of cur-
rent cell

Accesr value of current
cell and save at
NEWSTATE

Access values of general
neighbors and store in
CELLS in order

Are there local neighbors?

No Yes

Access local neighbors based
on values in NEWSTATE

T
Flow-Chart of Transition Computing Routine

Figure C.7

146

i.
Does current cell
expect input?

No
Yes

Get value of appropriate
input stream based on
SELECTINPUT field of
NEWSTATE and save in INPUT.
J

\Call Transition Function ^> r
Is transition undefined:

No

Put NEWSTATE
into "new" data
am

Yes

Terminate command
5 to PDP-7.

Done with Whole Space?

No

©

Yes

Make new data
area the current
state
A

Send command 2 to PDP7
giving X,Y, parameter
string

Call Post-
Transition
Routine S

Set flag indicating no
back up possible, conmand
failed.

Iterate over whole space,
computing image with
current mapping function
and send to POP7

Indicate command
success, back-up
possible.

Exit

(Exit)

Flow-Chart of Transition
Computing Routine

Figure C.7 (Concluded)

147

Five different commands may be given by the 1800 to the POP-7. Ex-

cept for the first, each command initiates a preplanned sequence of data

exchanges between the two machines. (This kind of organization was re-

quired by the limited capabilities of the available interface.) These

commands are:

1. Poll for a POP-7 command.

2. Initiate processing for an undefined transition.

5. Update the cell space display file as computed by the cur-

rent mapping function.

6. Define the current cell space configuration to the POP-7.

7. Report to the POP-7 the success or failure of the last com-

mand accepted from it via command 1.

C.2.3 Structure of Transition Routines

The program produced by the compiler consists of three logical parts:

1) a subroutine call to CELSP with a parameter pointing to 2) a control

block containing a description of a simulation to be performed and used to

establish linkages for running the simulation and 3) the set of routines

(transition function, maps, external cell procedure, etc.) constituting

the simulation. This section will describe the control block which pro-

vides primary linkage between the compiler and the running environment.

Figure C.8 is an annotated listing of the contents of the control block.

It is divided into sections each identified by an integer. For convenience

We expect that the new interface will permit more flexible interactive
procedures, such as, directly changing control locations in the opposite
machine without the necessity of cooperation from the opposite machine.

2
Numbers correspond to the codes used by the two computers.

■

148

*
* 1. STATE SPACE
*
MWPCU DC 2 MO. WORDS PFR HELL UNPACKFD
NWPC DC 2 HO. WORDS PER CELL PACKED
PACK# DC 0 ADR: PACK IMP, ROUTI ME
UNPK# DC 0 ADR; UNPACKING ROUTINE
*

* 2. NEIGHBORHOOD
*

NNEI DC 5 NO. OF GENERAL NEIGHBORS
NLIS DC $NBR ADR: NEIGHBOR LIST
NEIG« DC Ü ADR: NEIGHBOR PROCEDURE
INEI« DC 0 ADR: INITIAL NEIGHBOR PROCEDURE
DX DC 0 COSINE OF AXIS ANGLE
DY DC 0 SINE OF AXIS ANGLE
*
*

* 3. SIZE OF SIMULATION
*

M DC k NO. OF VERTICES
♦(MAXIMUM OF Id VERTICES)
*KX AMD KY ARE LISTS OF VERTEX POINTS FOP X AND Y, RFS".
* THE XS
KX DC 0 MUST BE ZERO

DC 1 "LOWER LEFT"
DG 1 "UPPFR LEFT"
DC 20 "UPPER RIOHT"
DC 20 "LOWER RIGHT"
OP.G KX+16

* THE YS
KY DC 0 MUST BE ZERO

DC 1 "LOWER LEFT"
DC 20 "UPPER LEFT"
DC 20 "UPPER RIGHT"
DC 1 "LOWER RIGHT"
ORG KY+16

TRANSITION ROUTINE CONTROL BLOCK
FIGURE C.8

•

149

*

* k, EXTERNAL AND INITIAL STATES
*

EL IS DC EXT ADR: EXTERNAL CELL STATE VALUE
EXTC* DC C ADR: EXTERNAL CELL PROCEDURE
ILIS DC 0 ADRs INITIAL CELL STATE VALUE
IN IS* DC 0 ADR; INITIAL STATE PROCEDURE
*
*
* 5. TRANSITIONS
*
BEFR# DC 0 ADR: pnF-TRANSITIOM CNTRY
AFTR# PC 0 ADR: POST-TRANS ITIOM ENTRY
TRAN# DC HOPS TRANSITION ROUTINc f:»!TRY

*

• C. DISPLAY MAPPIMfi ROUTINES
*

MAP* DC 0 ADR: ENTRY TO MAP 0
DC MAPI ADR: ENTRY
DC MAP2 ETC.
DC MAP3
DC 0 n
DC 0
DC 0
DC 0
DC 0
DC 0 #9

*

• 7. MISC
*

USER# DC USERR ADR: USER ENTRY
FLDTB DC $FLD ADR: FIELD AND DISPLACEMENT TABLE
CORB# DC COMPILER VERSION
CELNB DC 0 APR: LOCAL NEIGHBOR TABLE
INSLT DC $INPT ADR: INPUT SELECT FIELD

TRANSITION ROUTINE CONTROL BLOCK
FIGURE C.8 (CONTINUED)

150

*

*
$MBR

EMD OH FIXED LEMOTII PART

"CEMTRAI. CELL"

"UP"

*

$FLÜ

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC

0
0
0
1
1
0
-1
0
0
-1

2
0
1
2
2

"RIGHT"

"DOV/fJ"

"LEFT"

TWO FIELDS PER CELL
DISPLACEMENTS: 0 TO FIELD 1,
1 TO FIELD 2.
DATA TYPES: BOTH INTEGERS.

$INPT DC 0 FIRST WORD IS INPUT SELECT FIELD.

END OF CONTROL BLOCK

VARIABLE STORAGE AMD USERS ROUTINES FOLLOW.

TRANSITION ROUTINE CONTROL BLOCK
FIGURE C.8 (CONCLUDED)

151

we shall refer to lines relative to these sections, e.g., line 6.2 is the

second line in section 6. The values shown in the Figure are the values

that are generated by the compiler for the MODS cell space listed in

Figure 3.3.

Line 1.1 gives the number of machine words required to represent

the state of a cell. Line 1.2 gives the number of words per cell in the

unpacked format manipulated by the transition routines. Provision has

been made in the run time system (but not supported b) the language) to

use a different data format within the cell space data structure as com-

pared with that manipulated by the transition function. For example,

several boolean variables could conveniently be packed into a single word

in the data base but are most conveniently mainpulated on a one-per-word

basis by the transition routine. This facility has not been exploited

and is not discussed further.

Lines 2.1 and 2.2 define the general neighborhood. Line 2.1 is the

number of neighbors and 2.2 is a pointer to a block twice that length

giving, in the order declared, the relative X and Y displacements of

neighbors.

Lines 3.1 to 3.5 define the boundary of the cell space with the X and

Y coordinates listed in order in spearate vectors. The example defines a

25 by 25 square boundary.

The initial and external states are declared in lines 4.1 to 4.4.

Line 4.1 is a pointer to the value to be used for external cells, when

needed. Line 4.3 is a similiar pointer for the initial state. The pointers

are zero if no value is declared. The address of the external cell procedure

is given in line 4.2. If zero, default handling is provided.

152

Line 7.2 is a pointer to a table that provides the data displacements

and data types to the run time environment. The first word of the block

gives the number of fields of a cell, call this NFPC. Following is a

block of length NI;PC whose i entry gives the displacement relative to

the base of a cell of the itx field. Next follows another block of NFPC

words whose i entry represents the data type of the i field, encoded

as follows:

BOOLEAN 1

INTEGER 2

REAL 3

all others 0

Line 7.3 contains the version of the compiler that produced this

program and is used by the Run Time Environment to provide compatability

with older versions while developing and debugging a new version of the

compiler.

Local neighbors are indicated by line 7.4 which is a pointer to a

local neighbor table. The first word of this table is the number of local

neighbors, NLNB. Following is a block of size NLNB whose i , entry is the

relative displacement of base of the i data item of type COORD designating

the local neighbor values. For example, if the state of cell was defined

as

DECLARE STATE BLOCK (INTEGER, COORD, COORD];

DEFINE STATE: CELL;

then the following table would be generated:

On the 1800, a 16 bit word machine, real numbers arc represented by two
words of storage. Thus, the number of fields may be less than, or equal to,
the number of words in line 1.1.

153

DC 2

DC 1

DC 3

two local neighbors

first COORD is at second word

second COORD is at fourth word.

If input is declared, then line 7.5 points to a wo.d containing the

displacement of the field determining the input stream.

C.3 PDP-7 Software

The PDP-7 code consists primarily of three parallel tasks. These tasks

are 1) keyboard command language task, 2) display maintenance task, and

3) PDP-7/1800 communication task. In fact, it is difficult to divide the

program quite this cleanly, since control flows among these tasks, some-

times in parallel fashion, and sometimes, serially. Several other service

tasks are invoked from time to time for various special purposes.

The keyboard task is more or less the master task. It accepts input

either 1) from the display when the command menu is up or 2) from the key-

board at all times. Specific commands may cause the display to be changed

and/or infcrmation to be passed from PDP-7 to 1800 via the communication

task. Commands invoked by this task may accept arguments from the keyboard

and are responsible for their own format control and error detection. The

•U' and 'I' commands, for example, do not interact with the 1800 until the

entire command input is processed and accepted; then the data is shipped

in a "burst".

When sending commands to the 1800 for processing, the keyboard task

waits after each command for a success or failure response, (via command 7).

If success is reported, the command interpretation continue; if failure

is reported, then the current command sequence is aborted, the micro-program

•

154

(if any) terminated, an error message given, and processing initialized for

new commands.

The display management task is several relatively independent tasks,

one for each display image. Once a display is established, it is main-

tained via interrupts from the display hardware.

For the menu type images, the display is built from a series of button

control blocks. Each control block contains: 1) X and Y coordinates at

which to place the button on screen, 2) a pointer to the text to comprise

the button, 3) a bit indicating if the button is to be light pen sensitive,

and 4) if light pen sensitive, a parameter to be saved in a buffer upon a

light pen hit. Two special buttons, CANCEL and C.R., either empty the

buffer or release the buffer to be read by the command processor, respec-

tively.

A second major component of the display task is the display cells

section. The entire cell space output image as produced by the mapping

functions is kept in PDP-7 core. A routine called BLi <M produces a set

of control tables to drive the display to show the portion (if any) of the

space logically in the display window. Since the output state data is not

changed or edited when moving the display window, the 1800 need never be

aware of the current window position or its logical edges.

Light pen hits may invoke special tasks, such as, transmitting cell

identity during a MULTI DEFINE operation and handling the updated map value.

The communication task acts like a funnel to control the multiple tasks

that may want to interact with the 1800. The communication task itself is

controlled by commands from the 1800. One of the commands means in effect

155

"Give me any command you may have for me." The communication task then

enables the data transfer routines to be seized. Since several data trans-

fers in either direction may be involved in command execution, the data

transfer routines must be explicitly released by the using routines when an

interchange is completed, in order to let any further commands" fall through",

C.4 Communication Protocols

This section describes the communication protocols used between the

1800 and PUP-7 during data exchanges. These protocols are tabulated in

Figure C.9. The following conventions are used in this Figure:

There are two columns, with the left column representing data sent

from the 1800 to the PUP-7 and the right, the converse. Numerals down the

left side of the page designate independent command sequences. Within a

given sequence, capital letters are used to designate changes of transfer

direction. For example, in the first command the 1800 sends the command

and the POP-7 responds with either a zero (indicating no PDP-7 command at

present) or by initiating a PDP-7 command. In the second command, informa-

tion is passed only to the PDP-7 and no response is involved.

Most commands from the PDP-7 do not involve a command sequence of

their own but many result in 1800 initiated commands, such as updating the

cell space display.

156

1.

3.

1800 PDP7

A. Command 1
B. a.

b.
Zero "nothing for you"
non-zero is command code

2. A. Command 2
X and Y coordinates of

undefined transition
a string of text characters

terminated by zero

A. Command 5
B. Return 0
C. Map Number
D. Return 0
E. Time Step Number
F. Return 0
G. The cell graphics,

one for each cell
H. Return 0

4. A. Command 6
B. Return 0
C. Values of YMIN, YMAX

Values of arrays XMIN,
XMAX and BASE

Values of DXDY (slope
of axis)

Number of fields per cell
End-of-file

D. Return 0

1800/PDP-7 Interactive Protocols
Figure C.9

< /

157

1800 PDP7

5. A. Command 7
Success or failure of

previous command

6. A. 0,1,2,3,...,9,N,B,S,H,C,X,E

7. A. Command "U", "I"
A string of characters and

values
End-of-file

8. A. Command "M" (light pen hit)
X and Y coordinates of a cell

field number
value

B. Display character for
current map

9. A. Command QF
Field nuniber

B. Data type of given field

10. Command QR
A string of numerals, period

or negative sign terminated
by zero.

1800/PDP-7 Interactive Protocols
Figure C.9 (Continued)

•

158

1800 PDP7

B. a. If valid conversion:
Non-zero code word
Value (2 words)

b. If not valid:
Zero code

11. A. Command
B. Number of words per cell

Number of fields per cell
Contents of address table
External Cell State value
The Cell Space State
End-of-file

12. A. Command R
B. Request one word
C. Number of words per cell
D. Request one word
E. Number of fields per cell
F. Request address table
G. Contents of Address table
H. If same boundry, skip to J'

Else, request external cell
state value

K. External cell state value
L. Request Cell Space State
M. Cell Space State
N. End-of-file

1800/PDP-7 Interactive Protocols
Figure C.9 (Concluded)

« /

BIBLIOGRAPHY FOR APPENDIX C

Brender, R. F., D. R. Frantz, J. L. Foy, Jr., and T. W. Schunior,
Specialized System Software for Interacting DEC POP-7 and IBM 1800,
Technical Report 11, Concomp Project, University of Michigan,
Ann Arbor, December, 1968.

Brender, R. F., and J. L. Foy, Jr., Flexible Hi^h-Speed Interface Between
IBM 1800 and DEC PDP-7 Computers, Technical Report 12, Concomp
Project, University of Michigan, Ann Arbor, October, 1968.

Digital Equipment Corp. PDP-7 Users Handbook, D.E.C. Publication F-75.

, Programmed Eufferred Display 338 Programming Manual, D.E.C.
Publication DEC-08-G61B-D.

Frantz, D. R., R. F. Brender, and J. L. Foy, Jr., LOCOSS; A Multi-
programming Monitor for the DEC PDP-7, Technical Report-^, Concomp
Project, University of Michigan, Ann Arbor, October, 1968.

International Business Machines Corp. IBM 1800 Functional Characteristics,
IBM Publication No. A26-5918.

» ISH 1800 Time-Sharing Executive Systems and Techniques, IBM
' Publication No. C26-3703.

159

UNCLASSIFIED

DOCUMCNT CONTROL DATA .R&D
iftrurttt rlmulllt»»** »I Uth, hnttf »t ah»tr»r1 »wrf lmlr*Mt mmaMltm miiml hr »itHtml »him m» onrmll nport It rlm»»UI'd) 1

t. omoiN* TIN« »C Tl VIT» (Cotponlt awMor)

THE UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

tm. mtPonr ttcunirv cL«ifiricAiioN

lh. OROUP
Unclassified

i. N*»ei>T riTL«

A PROGRAMMING SYSTEM FOR THE SIMULATION OF CELLULAR SPACES

4. »■tCMiPTivr NOTtlftypt »Itfrnl mtl fnchnlv* daft)

Technical Report 25
I «utMoaitirriMf MMW. «IMI* Mlltol, ISSTSSmH

BRENDER, RONALD F.

4 mm O«TI

January 1970
u. nwixTf n nzvf NO.

DA-49-083 OSA 3050
». l»HOJICT NO.

?■, TOTAL NO. Or PAOKt

170
M. OniOINATOn't NCPONT NUMOtNltl

Technical Report 25

tb. OJHtn ntPomt HOW (Any olhtt numbtf Ihtl mmy b» multn»-'
Ihlt npott)

10. OltTMOUTION •TATIMIMT

Qualified requesters may obtain copies of this report from DDC.

17. SW^VklMKMTAII* NOTt« I*. tPONIORINO MILITANV ACTIWITV

Advanced Research Projects Agency

Regular networks of similar interacting components constitute an important
class of models in many disciplines, from automata theory to parallel computer
systems to biological systems. Yet, no simulation system provides compre-
hensive facilities for studying such models conveniently by computer. Such a
system is proposed and an implementation exhibited. Careful attention is given
to setting forth the guiding considerations in developing the final form of tho
system for supporting heuristic and interactive exploration of model behavior.

Chapter 1 develops the notions of cellular spaces (regular geometry,
neighborhood template, transition function) and reviews models used by von
Neumann, Codd, Flanigan, Finley and Holland. Chapter 2 analyses these models
and formulates the requirements for building a simulation system suitable for
a wide range of cellular models. Chapters 3 and 4 describe a total programming
system for simulation. A language is designed that provides novel constructs
useful for cellular models. A simulation support system provides on-line
monitoring of model behavior on a graph CRT and experimenter interaction with
the system via keyboard and lightpen. Chapter 5 discusses several applications
developed on the system, and evaluates and summarizes the work. Several
appendices detail the implementation!

\

DD .'r..l473 UNCLASSIFIED
lomrlly ClMiincallon

